Project description:The piRNA-interacting Piwi protein is involved in transcriptional silencing of transposable elements in ovaries of D. melanogaster. Here we characterized the genome-wide effect of nuclear Piwi elimination on the presence of the heterochromatic H3K9me3 mark and HP1a, as well as on the transcription-associated mark H3K4me2. Our results demonstrate that a significant increase in the H3K4me2 level upon nuclear Piwi loss is not accompanied by the alterations in H3K9me3 and HP1a levels for several germline-expressed transposons, suggesting that in this case Piwi prevents transcription by a mechanism distinct from H3K9 methylation. We found that the targets of Piwi-dependent chromatin repression are mainly related to the elements that display a higher level of H3K4me2 modification in the absence of silencing, i.e. most actively transcribed elements. We also show that Piwi-guided silencing does not significantly influence the chromatin state of dual-strand piRNA-producing clusters. In addition, host protein-coding gene expression is essentially not affected due to the nuclear Piwi elimination, but we noted an increase in small nuclear spliceosomal RNAs abundance and propose Piwi involvement in their posttranscriptional regulation. Our work reveals new aspects of transposon silencing in Drosophila, indicating that transcription of transposons can underpin their Piwi dependent silencing, while canonical heterochromatin marks are not obligatory for their repression.
Project description:The piRNA-interacting Piwi protein is involved in transcriptional silencing of transposable elements in ovaries of D. melanogaster. Here we characterized the genome-wide effect of nuclear Piwi elimination on the presence of the heterochromatic H3K9me3 mark and HP1a, as well as on the transcription-associated mark H3K4me2. Our results demonstrate that a significant increase in the H3K4me2 level upon nuclear Piwi loss is not accompanied by the alterations in H3K9me3 and HP1a levels for several germline-expressed transposons, suggesting that in this case Piwi prevents transcription by a mechanism distinct from H3K9 methylation. We found that the targets of Piwi-dependent chromatin repression are mainly related to the elements that display a higher level of H3K4me2 modification in the absence of silencing, i.e. most actively transcribed elements. We also show that Piwi-guided silencing does not significantly influence the chromatin state of dual-strand piRNA-producing clusters. In addition, host protein-coding gene expression is essentially not affected due to the nuclear Piwi elimination, but we noted an increase in small nuclear spliceosomal RNAs abundance and propose Piwi involvement in their posttranscriptional regulation. Our work reveals new aspects of transposon silencing in Drosophila, indicating that transcription of transposons can underpin their Piwi dependent silencing, while canonical heterochromatin marks are not obligatory for their repression. Examination of histone modifications in ovaries from two different fly lines- piwiNt/piwi2 (mutant) and piwi/+ (wildtype)
Project description:Drosophila Piwi-family proteins have been implicated in transposon control. Here, we examine piwi-interacting RNAs (piRNAs) associated with each Drosophila Piwi protein and find that Piwi and Aubergine bind RNAs that are predominantly antisense to transposons, whereas Ago3 complexes contain predominantly sense piRNAs. As in mammals, the majority of Drosophila piRNAs are derived from discrete genomic loci. These loci comprise mainly defective transposon sequences, and some have previously been identified as master regulators of transposon activity. Our data suggest that heterochromatic piRNA loci interact with potentially active, euchromatic transposons to form an adaptive system for transposon control. Complementary relationships between sense and antisense piRNA populations suggest an amplification loop wherein each piRNA-directed cleavage event generates the 5’ end of a new piRNA. Thus, sense piRNAs, formed following cleavage of transposon mRNAs, may enhance production of antisense piRNAs, complementary to active elements, by directing cleavage of transcripts from master control loci. Keywords: small RNA libraries from Drosophila ovaries
Project description:Heterochromatin, representing the silenced state of transcription, largely consists of transposon-enriched and highly repetitive sequences. Implicated in heterochromatin formation and transcriptional silencing in Drosophila are PIWI and repeat-associated small interfering RNAs (rasiRNAs). Despite this, the role of PIWI in rasiRNA expression and heterochromatic silencing remains unknown. Here we report the identification and characterization of 12,903 PIWI-interacting RNAs (piRNAs) in Drosophila, demonstrating that rasiRNAs represent a subset of piRNAs. Keywords: PIWI, piRNA, epigenetic regulation, heterochromatin
Project description:The PIWI interacting RNA pathway is a small RNA silencing system that keeps selfish genetic elements such as transposons under control in animal gonads. Several lines of evidence indicate that nuclear PIWI family proteins guide transcriptional silencing of their targets, yet the composition of the underlying silencing complex is unknown. Here we demonstrate that the double CHHC zinc finger protein Gtsf1 is an essential factor for Piwi mediated transcriptional repression in Drosophila. Cells lacking Gtsf1 contain nuclear Piwi loaded with piRNAs, yet Piwi's silencing capacity is ablated. Gtsf1 interacts stably with a sub-population of nuclear Piwi and loss of Gtsf1 phenocopies loss of Piwi in terms of deregulation of transposons, loss of H3K9me3 marks at euchromatic transposon insertions and deregulation of genes in proximity to repressed transposons. We propose that only a small fraction of nuclear Piwi interacts productively with a target RNA, resulting in assembly of a silencing complex with Gtsf1 as one core component. impact of loss of DmGtsf1 on transcription and H3K9m3 in ovarian somatic cells (OSC)
Project description:Silencing of transposons in the Drosophila ovary relies on three Piwi-family proteins, Piwi, Aubergine (Aub), and Ago3, acting in concert with their small RNA guides, the piRNAs. Aub and Ago3 are found in the germ cell cytoplasm, where they function in the ping-pong cycle to consume transposon mRNAs. The nuclear Piwi protein is required for transposon silencing in both germ and somatic follicle cells, yet the precise mechanisms by which Piwi acts remain largely unclear. We investigated the role of Piwi by combining cell-type specific knockdowns with measurements of steady state transposon mRNA levels, nascent RNA synthesis, and small RNA abundance. In somatic cells, Piwi loss lead to concerted effects on nascent transcripts and transposon mRNAs, indicating that Piwi acts through transcriptional gene silencing (TGS). In germ cells, Piwi loss showed disproportionate impacts on steady state RNA levels, indicating that it also exerts an effect on post-transcriptional gene silencing (PTGS). Piwi knockdown affected levels of germ cell piRNAs presumably bound to Aub and Ago3, perhaps explaining its post-transcriptional impacts. Overall, our results indicate that Piwi plays multiple roles in the piRNA pathway, in part enforcing transposon repression through effects on transcription but also participating in germ cell piRNA biogenesis. Piwi function in transcriptional and post-transcriptional transposon silencing was probed using deep-sequencing of small RNAs, steady-state and nascent transcripts, and DNA associated with H3K9me3 chromatin mark. In all cases comparison of two samples was performed: Tj- or nos-driven knock down of piwi to respective knock down of white gene (control sample). RNA-seq dataset has two replicates.
Project description:Silencing of transposons in the Drosophila ovary relies on three Piwi-family proteins, Piwi, Aubergine (Aub), and Ago3, acting in concert with their small RNA guides, the piRNAs. Aub and Ago3 are found in the germ cell cytoplasm, where they function in the ping-pong cycle to consume transposon mRNAs. The nuclear Piwi protein is required for transposon silencing in both germ and somatic follicle cells, yet the precise mechanisms by which Piwi acts remain largely unclear. We investigated the role of Piwi by combining cell-type specific knockdowns with measurements of steady state transposon mRNA levels, nascent RNA synthesis, and small RNA abundance. In somatic cells, Piwi loss lead to concerted effects on nascent transcripts and transposon mRNAs, indicating that Piwi acts through transcriptional gene silencing (TGS). In germ cells, Piwi loss showed disproportionate impacts on steady state RNA levels, indicating that it also exerts an effect on post-transcriptional gene silencing (PTGS). Piwi knockdown affected levels of germ cell piRNAs presumably bound to Aub and Ago3, perhaps explaining its post-transcriptional impacts. Overall, our results indicate that Piwi plays multiple roles in the piRNA pathway, in part enforcing transposon repression through effects on transcription but also participating in germ cell piRNA biogenesis.
Project description:Drosophila Piwi-family proteins have been implicated in transposon control. Here, we examine piwi-interacting RNAs (piRNAs) associated with each Drosophila Piwi protein and find that Piwi and Aubergine bind RNAs that are predominantly antisense to transposons, whereas Ago3 complexes contain predominantly sense piRNAs. As in mammals, the majority of Drosophila piRNAs are derived from discrete genomic loci. These loci comprise mainly defective transposon sequences, and some have previously been identified as master regulators of transposon activity. Our data suggest that heterochromatic piRNA loci interact with potentially active, euchromatic transposons to form an adaptive system for transposon control. Complementary relationships between sense and antisense piRNA populations suggest an amplification loop wherein each piRNA-directed cleavage event generates the 5’ end of a new piRNA. Thus, sense piRNAs, formed following cleavage of transposon mRNAs, may enhance production of antisense piRNAs, complementary to active elements, by directing cleavage of transcripts from master control loci. Keywords: small RNA libraries from Drosophila ovaries small RNAs (23-29nt) were isolated from total ovarian RNA or from immunopreciptated Piwi/Aubergine/Ago3 complexes. cDNA libraries were constructed after Pfeffer et al. 2005 (Nat. Methods) and sequenced at 454 Life Sciences. The used strain is OregonR. Only sequences matching the Release5 genome assembly (www.fruitfly.org) are considered.
Project description:The PIWI interacting RNA pathway is a small RNA silencing system that keeps selfish genetic elements such as transposons under control in animal gonads. Several lines of evidence indicate that nuclear PIWI family proteins guide transcriptional silencing of their targets, yet the composition of the underlying silencing complex is unknown. Here we demonstrate that the double CHHC zinc finger protein Gtsf1 is an essential factor for Piwi mediated transcriptional repression in Drosophila. Cells lacking Gtsf1 contain nuclear Piwi loaded with piRNAs, yet Piwi's silencing capacity is ablated. Gtsf1 interacts stably with a sub-population of nuclear Piwi and loss of Gtsf1 phenocopies loss of Piwi in terms of deregulation of transposons, loss of H3K9me3 marks at euchromatic transposon insertions and deregulation of genes in proximity to repressed transposons. We propose that only a small fraction of nuclear Piwi interacts productively with a target RNA, resulting in assembly of a silencing complex with Gtsf1 as one core component.