Project description:The human gut is inhabited by a complex ecosystem of microorganisms, encompassing bacteria, viruses, protozoa, and fungi. Recent research has illuminated the significance of the gut fungal microbiota (mycobiota) in shaping host immunity and influencing the onset and progression of various human diseases. While most investigations into gut microbiota have centered on bacteria, accumulating evidence has underscored the role of mycobiota in the development of inflammatory bowel diseases (IBD), including both ulcerative colitis (UC) and Crohn's disease (CD). In this study, we present the isolation of the live Malassezia globosa strains from the intestinal mucosa of UC patients for the first time. We provide a comprehensive analysis of the characteristics and virulence of this fungus. Malassezia, primarily known to inhabit human skin, prompted us to compare the genomes, transcriptomes, and virulence of M. globosa gut isolates with those of M. globosa strains isolated from the skin. This comparative analysis aimed to discern potential niche-specific adaptations of the fungus. Our findings reveal a striking disparity in the pathogenicity of M. globosa isolated from the gut compared to its skin counterpart. In a mouse model, gut-isolated M. globosa exhibited a more pronounced exacerbation of DSS-induced colitis and elevated production of inflammatory cytokines. Additionally, transcriptome analysis indicated that gut isolates of M. globosa display heightened sensitivity to normoxia compared to their skin-isolated counterparts, suggesting adaptation to the hypoxic conditions prevalent in the intestinal mucosal environment
Project description:Introduction. Malassezia globosa is a yeast species that belongs to the mycobiota of humans and animals, associated with dermatological disorders, such as dandruff. This is a chronic scalp skin disorder characterized by flaking and itching. Treatments include commercial shampoo with different formulations that contain antifungal activities like zinc pyrithione (ZPT) or piroctone olamine (PO). The effectiveness of these formulations has been evaluated for decades for dandruff symptom relief of volunteers. To date, non-mammalian, in vivo methods exist to test formulations of these actives. Aim. To evaluate in vivo in Galleria mellonella larva, two commercial antifungal shampoos (shampoo with 1 % ZPT and 1.6 % zinc Carbonate and shampoo with 0.5 % PO) against this species. Methodology. G. mellonella larvae were inoculated with M. globosa on abraded cuticular surface. Then, integument cell viability, histological changes, and fungal burden were evaluated. Results. Larvae inoculated with M. globosa showed higher lesion melanization and tissue damage. In addition, M. globosa population showed to increase over time. Concerning the shampoo's effectiveness, both formulations significantly reduced M. globosa burden and tissue damage. Conclusion. G. mellonella larvae were allowed to evaluate M. globosa superficial infection and antifungal effectiveness. Shampoos with ZPT and PO showed a positive effect on inoculated larvae.
Project description:The skin commensal yeast Malassezia is associated with several skin disorders. To establish a reference resource, we sought to determine the complete genome sequence of Malassezia sympodialis and identify its protein-coding genes. A novel genome annotation workflow combining RNA sequencing, proteomics, and manual curation was developed to determine gene structures with high accuracy.
Project description:Diacylglycerol (DAG)-like lipases are found to play an important role in the life sciences and industrial fields. A putative DAG-like lipase (MgMDL2) from Malassezia globosa was cloned and expressed in recombinant Pichia pastoris. The recombinant MgMDL2 was expressed as a glycosylated protein and purified into homogeneity by anion exchange chromatography. The activity of recombinant MgMDL2 was optimal at 15 °C and pH 6.0, and it keeps over 50% of relative activity at 5 °C, suggesting that MgMDL2 was a cold active lipase. MgMDL2 retained over 80% of initial activity after incubation at 30 and 40 °C for 2.5 h, but it was not stable at 50 °C. Incubation of methanol and ethanol at a concentration of 30% for 2 h did not affect the recombinant enzyme activity, while metal ions, including Ca2+, Mn2+ and Ni2+, sharply inhibited the MgMDL2 activity at 5 mM by 42%, 35% and 36%, respectively. MgMDL2 exhibited a preference for medium chain-length esters with highest activity toward p-nitrophenyl caprylate, while it was active on mono- and diacylglycerol but not on triacylglycerol, indicating that it was a typical DAG-like lipase. By homology modeling, Phe278 was predicted to be involved in the preference of MgMDL2 for monoacyl- and diacyl-glyceride substrates, but not triglycerides.
Project description:Malassezia globosa cytochromes P450 CYP51 and CYP5218 are sterol 14α-demethylase (the target of azole antifungals) and a putative fatty acid metabolism protein (and a potential azole drug target), respectively. Lanosterol, eburicol and obtusifoliol bound to CYP51 with Kd values of 32, 23 and 28 μM, respectively, catalyzing sterol 14α-demethylation with respective turnover numbers of 1.7 min(-1), 5.6 min(-1) and 3.4 min(-1). CYP5218 bound a range of fatty acids with linoleic acid binding strongest (Kd 36 μM), although no metabolism could be detected in reconstitution assays or role in growth on lipids. Clotrimazole, fluconazole, itraconazole, ketoconazole, voriconazole and ketaminazole bound tightly to CYP51 (Kd ≤ 2 to 11 nM). In contrast, fluconazole did not bind to CYP5218, voriconazole and ketaminazole bound weakly (Kd ~107 and ~12 μM), whereas ketoconazole, clotrimazole and itraconazole bound strongest to CYP5218 (Kd ~1.6, 0.5 and 0.4 μM) indicating CYP5218 to be only a secondary target of azole antifungals. IC50 determinations confirmed M. globosa CYP51 was strongly inhibited by azole antifungals (0.15 to 0.35 μM). MIC100 studies showed itraconazole should be considered as an alternative to ketoconazole given the potency and safety profiles and the CYP51 assay system can be used in structure-activity studies in drug development.
Project description:Thermostability and substrate specificity are important characteristics of enzymes for industrial application, which can be improved by protein engineering. SMG1 lipase from Malassezia globosa is a mono- and diacylglycerol lipase (MDL) that shows activity toward mono- and diacylglycerols, but no activity toward triacylglycerols. SMG1 lipase is considered a potential biocatalyst applied in oil/fat modification and its crystal structure revealed that an interesting residue-Asn277 may contribute to stabilize loop 273-278 and the 3104 helix which are important to enzyme characterization. In this study, to explore its role in affecting the stability and catalytic activity, mutagenesis of N277 with Asp (D), Val (V), Leu (L) and Phe (F) was conducted. Circular dichroism (CD) spectral analysis and half-life measurement showed that the N277D mutant has better thermostability. The melting temperature and half-life of the N277D mutant were 56.6 °C and 187 min, respectively, while that was 54.6 °C and 121 min for SMG1 wild type (WT). Biochemical characterization of SMG1 mutants were carried out to test whether catalytic properties were affected by mutagenesis. N277D had similar enzymatic properties as SMG1 WT, but N277F showed a different substrate selectivity profile as compared to other SMG1 mutants. Analysis of the SMG1 3D model suggested that N277D formed a salt bridge via its negative charged carboxyl group with a positively charged guanidino group of R227, which might contribute to confer N277D higher temperature stability. These findings not only provide some clues to understand the molecular basis of the lipase structure/function relationship but also lay the framework for engineering suitable MDL lipases for industrial applications.
Project description:We performed shallow whole genome sequencing (WGS) on circulating free (cf)DNA extracted from plasma or cerebrospinal fluid (CSF), and shallow WGS on the tissue DNA extracted from the biopsy in order to evaluate the correlation between the two biomaterials. After library construction and sequencing (Hiseq3000 or Ion Proton), copy number variations were called with WisecondorX.