Project description:Gene expression profoling of developping endosperm at 3 and 6 days after flowering (DAH): Nipponbare vs NIL(TGW6) We used two rice varieties, NIL(TGW6) and Nipponbare.NIL(TGW6) is a nearly isogenic line containing the thousand grain weight qTGW6. For samples used three stages: 3 and 6 DAH endosperm in both Nipponbare and NIL(TGW6). Two dye swapped experiments were performed.
Project description:Tissue-specific transcriptional profiling of the abscission layer (AL) at the base of young flower in rice using laser micro-dissection: NIL(qSH1) vs. Nipponbare. We used two rice varieties, NIL(qSH1) and Nipponbare. NIL(qSH1) is a nearly isogenic line containing the seed shattering gene qSH1. Seed shattering is easy in NIL(qSH1), but it is not in Nipponbare. So, we used some stages of young flower in NIL(qSH1) and some in Nipponbare. Four regions: 1. abscission layer region of NIL(qSH1), 2. upper abscission region of NIL(qSH1), 3. lower abscission layer region of NIL(qSH1), and 4. abscission layer region of Nipponbare. Sample experiments: NIL(qSH1) AL vs. Nipponbare AL, NIL(qSH1) AL vs. NIL(qSH1) upper region of AL, and NIL(qSH1) AL vs. NIL(qSH1) lower region of AL.
Project description:Abscission layer (AL) at the base of flower in rice using laser micro-dissection: NIL(qSH1) AL vs. Nipponbare AL, NIL(qSH1) AL vs. NIL(qSH1) upper region of AL, and NIL(qSH1) AL vs. NIL(qSH1) lower region of AL
Project description:Tissue-specific transcriptional profiling of the abscission layer (AL) at the base of young flower in rice using laser micro-dissection: NIL(qSH1) vs. Nipponbare.
Project description:In this study, we used a cross-species network approach to uncover nitrogen (N)-regulated network modules conserved across a model and a crop species. By translating gene network knowledge from the data-rich model Arabidopsis (Arabidopsis thaliana, ecotype Columbia-0) to a crop, rice (Oryza sativa spp. japonica (Nipponbare)), we identified evolutionarily conserved N-regulatory modules as targets for translational studies to improve N use efficiency in transgenic plants.
Project description:Cultivated rice (Oryza sativa L.) is frequently exposed to multiple stresses, including Schizotetranychus oryzae mite infestation. Rice domestication has narrowed the genetic diversity of the species, leading to a wide susceptibility. This work aimed to observe the response of two wild rice species (Oryza barthii and O. glaberrima) and two O. sativa genotypes (cv. Nipponbare and f. spontanea) to S. oryzae infestation. Surprisingly, leaf damage, histochemistry, chlorophyll concentration and fluorescence showed that the wild species present higher level of leaf damage, increased accumulation of H2O2 and lower photosynthetic capacity when compared to O. sativa genotypes under infested conditions. Infestation decreased tiller number, except in Nipponbare. Infestation also caused the death of wild plants during the reproductive stage. While infestation did not affect the weight of 1,000 grains in both O. sativa genotypes, the number of panicles per plant was affected only in f. spontanea, and the percentage of full seeds per panicle and seed length were increased only in Nipponbare. Using proteomic analysis, we identified 195 differentially abundant proteins when comparing susceptible (O. barthii) and tolerant (Nipponbare) genotypes under control and infested conditions. O. barthii has a less abundant antioxidant arsenal and is unable to modulate proteins involved with general metabolism and energy production under infested condition. Nipponbare presents high abundance of detoxification-related proteins, general metabolic processes and energy production, suggesting that, under infested condition, the primary metabolism is maintained more active compared to O. barthii. Also, under infested conditions, Nipponbare presents higher levels of proline and a greater abundance of defense-related proteins, such as osmotin, ricin B-like lectin, and protease inhibitors. These differentially abundant proteins can be used as biotechnological tools in breeding programs aiming increased tolerance to mite infestation.
Project description:Cellularization is a key event during the development of the endosperm. Our understanding of the developmental regulation of cellularization has been limited for plants other than Arabidopsis. We found that the activation of OsbZIP76 coincided with the initiation of cellularization of rice. Either knockdown or knockout of OsbZIP76 led to precocious cellularization. Many genes involved in endosperm development or starch biosynthesis were prematurely activated in the caryopsis at two days after fertilization. The results implied that OsbZIP76 is involved in the regulation of cellularization in rice. As a putative transcription factor, OsbZIP76 alone lacked transcriptional activation activity. However, it was able to interact with OsNF-YB9 and OsNF-YB1, two nuclear factor Y (NF-Y) family transcription factors, both in yeast and in planta. OsbZIP76 and OsNF-YB9 showed similar endosperm-preferential expression patterns and the transiently expressed proteins were colocalized in the epidermal cells of tobacco. As with osnf-yb1 mutants, the osbzip76 mutants showed reduced seed size and reduced apparent amylose content of the seeds. We also confirmed that OsbZIP76 is an imprinted gene in rice, the expression of which depended on the genetic background. Our results suggested that OsbZIP76 is an endosperm-expressed imprinted gene to regulate development of the endosperm in rice.