Project description:The master transcription factors Oct4, Sox2 and Nanog bind enhancer elements and recruit the Mediator co-activator to activate much of the gene expression program of embryonic stem cells (ESCs). We report here that the ESC master transcription factors and Mediator form “super-enhancers” at most genes known to control the pluripotent state, including those encoding the master transcription factors themselves. These super-enhancers consist of extraordinarily large genomic domains occupied by exceptional amounts of Oct4, Sox2, Nanog, Klf4, Esrrb and Mediator. Super-enhancers stimulate considerably higher transcription than typical enhancers in vivo and in reporter vectors. Reduced levels of Oct4 or Mediator cause preferential loss of expression of super-enhancer-associated genes relative to other genes, suggesting how changes in gene expression programs might be accomplished during development. In other more differentiated cells, super-enhancers containing cell-type-specific master transcription factors are also found at genes that define cell identity. These results implicate super-enhancers in the control of mammalian cell identity and differentiation. ChIP-Seq and controls associated with Super-Enhancers in murine cell types
Project description:The master transcription factors Oct4, Sox2 and Nanog bind enhancer elements and recruit the Mediator co-activator to activate much of the gene expression program of embryonic stem cells (ESCs). We report here that the ESC master transcription factors and Mediator form M-bM-^@M-^\super-enhancersM-bM-^@M-^] at most genes known to control the pluripotent state, including those encoding the master transcription factors themselves. These super-enhancers consist of extraordinarily large genomic domains occupied by exceptional amounts of Oct4, Sox2, Nanog, Klf4, Esrrb and Mediator. Super-enhancers stimulate considerably higher transcription than typical enhancers in vivo and in reporter vectors. Reduced levels of Oct4 or Mediator cause preferential loss of expression of super-enhancer-associated genes relative to other genes, suggesting how changes in gene expression programs might be accomplished during development. In other more differentiated cells, super-enhancers containing cell-type-specific master transcription factors are also found at genes that define cell identity. These results implicate super-enhancers in the control of mammalian cell identity and differentiation. Time-course of gene expression following shRNA knockdown of Oct4 and Med12.
Project description:The master transcription factors Oct4, Sox2 and Nanog bind enhancer elements and recruit the Mediator co-activator to activate much of the gene expression program of embryonic stem cells (ESCs). We report here that these ESC master transcription factors and Mediator form M-bM-^@M-^\super-enhancersM-bM-^@M-^] at most genes that are known to control the pluripotent state, including those encoding the master transcription factors themselves. These super-enhancers consist of extraordinarily large genomic domains occupied by exceptional amounts of Oct4 and Mediator. Super-enhancers stimulate considerably higher transcription than typical enhancers in reporter vectors. ESC differentiation causes preferential loss of expression of super-enhancer -associated genes. Super-enhancers are also found at key cell identity genes in differentiated cells. These results implicate super-enhancers in the control of mammalian cell identity and differentiation and suggest that these elements might generally be used to identify genes that control cell-type specific gene expression programs in many mammalian cells. ChIP-Seq and RNA-seq of Med1 in ZHBTc4 ES during treatment with doxycycline. ChIP-Seq data of Med1 in 38B9 pro-B cells.
Project description:Mediator complex regulates transcription by connecting enhancers to promoters. High Mediator binding density defines super enhancers, which regulate cell-identity genes and oncogenes. Protein interactions of Mediator may explain its role in these processes but have not been identified comprehensively. Here we purify Mediator from neural stem cells (NSCs) and identify 75 protein-protein interaction partners. We identify super enhancers in NSCs and show that Mediator-interacting chromatin modifiers colocalise with Mediator at enhancers and super enhancers. Transcription factor families with high affinity for Mediator dominate enhancers and super enhancers and can explain genome-wide Mediator localization. We identify E-box transcription factor Tcf4 as a key regulator of NSCs. Tcf4 interacts with Mediator, colocalises with Mediator at super enhancers and regulates neurogenic transcription factor genes with super enhancers and broad H3K4me3 domains. Our data suggest that high binding-affinity for Mediator is an important organizing feature in the transcriptional network that determines NSC identity.
Project description:The master transcription factors Oct4, Sox2 and Nanog bind enhancer elements and recruit the Mediator co-activator to activate much of the gene expression program of embryonic stem cells (ESCs). We report here that these ESC master transcription factors and Mediator form “super-enhancers” at most genes that are known to control the pluripotent state, including those encoding the master transcription factors themselves. These super-enhancers consist of extraordinarily large genomic domains occupied by exceptional amounts of Oct4 and Mediator. Super-enhancers stimulate considerably higher transcription than typical enhancers in reporter vectors. ESC differentiation causes preferential loss of expression of super-enhancer -associated genes. Super-enhancers are also found at key cell identity genes in differentiated cells. These results implicate super-enhancers in the control of mammalian cell identity and differentiation and suggest that these elements might generally be used to identify genes that control cell-type specific gene expression programs in many mammalian cells.
Project description:The master transcription factors Oct4, Sox2 and Nanog bind enhancer elements and recruit the Mediator co-activator to activate much of the gene expression program of embryonic stem cells (ESCs). We report here that the ESC master transcription factors and Mediator form “super-enhancers” at most genes known to control the pluripotent state, including those encoding the master transcription factors themselves. These super-enhancers consist of extraordinarily large genomic domains occupied by exceptional amounts of Oct4, Sox2, Nanog, Klf4, Esrrb and Mediator. Super-enhancers stimulate considerably higher transcription than typical enhancers in vivo and in reporter vectors. Reduced levels of Oct4 or Mediator cause preferential loss of expression of super-enhancer-associated genes relative to other genes, suggesting how changes in gene expression programs might be accomplished during development. In other more differentiated cells, super-enhancers containing cell-type-specific master transcription factors are also found at genes that define cell identity. These results implicate super-enhancers in the control of mammalian cell identity and differentiation.
Project description:The master transcription factors Oct4, Sox2 and Nanog bind enhancer elements and recruit the Mediator co-activator to activate much of the gene expression program of embryonic stem cells (ESCs). We report here that the ESC master transcription factors and Mediator form “super-enhancers” at most genes known to control the pluripotent state, including those encoding the master transcription factors themselves. These super-enhancers consist of extraordinarily large genomic domains occupied by exceptional amounts of Oct4, Sox2, Nanog, Klf4, Esrrb and Mediator. Super-enhancers stimulate considerably higher transcription than typical enhancers in vivo and in reporter vectors. Reduced levels of Oct4 or Mediator cause preferential loss of expression of super-enhancer-associated genes relative to other genes, suggesting how changes in gene expression programs might be accomplished during development. In other more differentiated cells, super-enhancers containing cell-type-specific master transcription factors are also found at genes that define cell identity. These results implicate super-enhancers in the control of mammalian cell identity and differentiation.