Project description:The brown rot wood decay fungus, Fomitopsis pinicola strain FP-58527, was cultivated for five dayes in media containing ground Populus tremuloides, Pinus taeda or Picea glauca wood as sole carbon source. Extracellular proteomic component was extracted and analyzed by LC-MS/MS.
Project description:The ability to obtain carbon and energy is a major requirement to exist in any environment. For several ascomycete fungi (post-)genomic analyses have shown that species that occupy a large variety of habitats possess a diverse enzymatic machinery, while species with a specific habitat have a more focused enzyme repertoire that is well-adapted to the prevailing substrate. White-rot basidiomycete fungi also live in a specific habitat, as they are found exclusively in wood. In this study we evaluated how well the white-rot fungus Dichomitus squalens has adapted to degrade its natural wood substrate. The transcriptome and exoproteome of D. squalens were analysed after cultivation on two natural substrates, aspen and spruce wood, and two non-woody substrates, wheat bran and cotton seed hulls. D. squalens produced ligninolytic enzymes mainly at the early time point of the wood cultures, indicating the need to degrade lignin to get access to wood polysaccharides. Surprisingly, the response of the fungus to the non-woody polysaccharides was nearly as good match to the substrate composition as observed for the wood polysaccharides. This indicates that D. squalens has preserved its ability to efficiently degrade plant polysaccharides not present in its natural habitat.
Project description:1. Decomposition of lignin-rich wood by fungi drives nutrient recycling in woodland ecosystems. Fluctuating abiotic conditions are known to promote the functioning of ecological communities and ecosystems. In the context of wood decay, fluctuating temperature increases decomposition rates. Metabolomics, in tandem with other ‘omics tools, can highlight the metabolic processes affected by experimental treatments, even in the absence of genome sequences and annotations. Globally, natural wood decay communities are dominated by the phylum Basidiomycota. We examined the metabolic responses of Mucidula mucida, a dominant constituent of pioneer communities in beech branches in British woodlands, and Exidia glandulosa, a stress-selected constituent of the same communities, in response to constant and diurnally cycling temperature. 2. We applied untargeted metabolomics and proteomics to beech wood blocks, colonised by M. mucida or E. glandulosa and exposed to either diurnally cycling (mean 15 ± 10°C) or constant (15°C) temperature, in a fully factorial design. 3. Metabolites and proteins linked to lignin breakdown, the citric acid cycle, pentose phosphate pathway, carbohydrate metabolism, fatty acid metabolism and protein biosynthesis and turnover were under-enriched in fluctuating, compared to stable temperatures, in the generalist M. mucida. Conversely E. glandulosa showed little differential response to the experimental treatments. 4. Synthesis. By demonstrating temperature dependant metabolic signatures related to nutrient acquisition in a generalist wood decay fungus, we provide new insights into how abiotic conditions can affect community-mediated decomposition and carbon turnover in forests. We show that mechanisms underpinning important biogeochemical processes can be highlighted using untargeted metabolomics and proteomics in the absence of well-annotated genomes.
Project description:Eutypa dieback is a vascular disease that may severely affect vineyards throughout the world. In the present work, microarrays analysis were made in order (i) to improve our knowledge of grapevine (Vitis vinifera cv. Cabernet-Sauvignon) responses to Eutypa lata, the causal agent of Eutypa dieback and (ii) to identify genes that may prevent symptom development. Qiagen/Operon grapevine microarrays bearing 14,500 probes were used to compare between three experimental conditions (in vitro, greenhouse, vineyard), foliar material of infected symptomatic plants (S+R+), infected asymptomatic plants (S-R+), and healthy plants (S-R-). These plants were characterized by symptoms notation after natural (vineyard) or experimental (in vitro, greenhouse) infection, re-isolation of the fungus located in the lignified parts, and the formal identification of E. lata mycelium by PCR. Semi-quantitative RT-PCR experiments were run to confirm the expression of some genes of interest in response to E. lata. Their expression profiles were also studied in response to other grapevine pathogens (E. necator, P. viticola, B. cinerea). (i) Five functional categories including metabolism, defense reactions, interaction with environment, transport and transcription were up-regulated in S+R+ plants compared to S-R- plants. These genes, which cannot prevent infection and symptom development, are not specific since they were also upregulated after infection by powdery mildew, downy mildew and black rot. (ii) Most of the genes that may prevent symptom development are associated with the light phase of photosynthesis. This finding is discussed in the context of previous data on the mode of action of eutypin and Eutypa secreted polypeptide fraction.
Project description:The fungus Polyporus brumalis is a wood decay fungus previously evidenced as efficient lignin degrader with high potential for plant biomass pre-treatment before conversion into bio-energy. Here we used an RNASeq approach that highlighted the active transcription of an unparalleled number of lignin active peroxidases and H2O2 generating enzymes during growth on wheat straw. These enzymes, together with metabolic processes related to detoxification appear as key determinants of the fungal adaption to lignin degradation.
Project description:Decomposition of lignin-rich wood by fungi drives nutrient recycling in woodland ecosystems. Fluctuating abiotic conditions are known to promote the functioning of ecological communities and ecosystems. In the context of wood decay, fluctuating temperature increases decomposition rates. Metabolomics, in tandem with other ‘omics tools, can highlight the metabolic processes affected by experimental treatments, even in the absence of genome sequences and annotations. Globally, natural wood decay communities are dominated by the phylum Basidiomycota. We examined the metabolic responses of Mucidula mucida, a dominant constituent of pioneer communities in beech branches in British woodlands, and Exidia glandulosa, a stress-selected constituent of the same communities, in response to constant and diurnally cycling temperature. We applied untargeted metabolomics and proteomics to beech wood blocks, colonised by M. mucida or E. glandulosa and exposed to either diurnally cycling (mean 15 ± 10°C) or constant (15°C) temperature, in a fully factorial design. Metabolites and proteins linked to lignin breakdown, the citric acid cycle, pentose phosphate pathway, carbohydrate metabolism, fatty acid metabolism and protein biosynthesis and turnover were under-enriched in fluctuating, compared to stable temperatures, in the generalist M. mucida. Conversely E. glandulosa showed little differential response to the experimental treatments. By demonstrating temperature dependant metabolic signatures related to nutrient acquisition in a generalist wood decay fungus, we provide new insights into how abiotic conditions can affect community-mediated decomposition and carbon turnover in forests. We show that mechanisms underpinning important biogeochemical processes can be highlighted using untargeted metabolomics and proteomics in the absence of well-annotated genomes.