Project description:Neofusicoccum parvum, in the family Botryosphaeriaceae, was identified as the causal agent of bot gummosis of lemon (Citrus × limon) trees, in the two major lemon-producing regions in Italy. Gummy cankers on trunk and scaffold branches of mature trees were the most typical disease symptoms. Neofusicoccum parvum was the sole fungus constantly and consistently isolated from the canker bark of symptomatic lemon trees. It was identified on the basis of morphological characters and the phylogenetic analysis of three loci, i.e., the internal transcribed spacer of nuclear ribosomal DNA (ITS) as well as the translation elongation factor 1-alpha (TEF1) and β-tubulin (TUB2) genes. The pathogenicity of N. parvum was demonstrated by wound inoculating two lemon cultivars, 'Femminello 2kr' and 'Monachello', as well as citrange (C. sinensis × Poncirus trifoliata) 'Carrizo' rootstock. In artificial inoculations, the fungus was very aggressive on lemons and weakly virulent on citrange, consistently with symptoms observed in the field as a consequence of natural infections. This is the first report of N. parvum, both in a wide and in a strict taxonomic sense, as a pathogen of lemon in Italy.
Project description:Neofusicoccum parvum is a fungal plant-pathogen belonging to the family Botryosphaeriaceae, and is considered one of the most aggressive causal agents of the grapevine trunk disease (GTD) Botryosphaeria dieback. In this study, the mycovirome of a single strain of N. parvum (COLB) was characterized by high throughput sequencing analysis of total RNA and subsequent bioinformatic analyses. Contig annotations, genome completions, and phylogenetic analyses allowed us to describe six novel mycoviruses belonging to four different viral families. The virome is composed of two victoriviruses in the family Totiviridae, one alphaendornavirus in the family Endornaviridae, two mitoviruses in the family Mitoviridae, and one narnavirus belonging to the family Narnaviridae. The presence of the co-infecting viruses was confirmed by sequencing the RT-PCR products generated from total nucleic acids extracted from COLB. This study shows that the mycovirome of a single N. parvum strain is highly diverse and distinct from that previously described in N. parvum strains isolated from grapevines.
Project description:Neofusicoccum parvum is a fungal pathogen associated with a wide range of plant hosts. Despite being widely studied, the molecular mechanism of infection of N. parvum is still far from being understood. Analysis of N. parvum genome lead to the identification of six putative genes encoding necrosis and ethylene-inducing proteins (NLPs). The sequence of NLPs genes (NprvNep 1-6) were analyzed and four of the six NLP genes were successfully cloned, expressed in E. coli and purified by affinity chromatography. Pure recombinant proteins were characterized according to their phytotoxic and cytotoxic effects to tomato leaves and to mammalian Vero cells, respectively. These assays revealed that all NprvNeps tested are cytotoxic to Vero cells and also induce cell death in tomato leaves. NprvNep2 was the most toxic to Vero cells, followed by NprvNep1 and 3. NprvNep4 induced weaker, but, nevertheless, still significant toxic effects to Vero cells. A similar trend of toxicity was observed in tomato leaves: the most toxic was NprvNep 2 and the least toxic NprvNep 4. This study describes for the first time an overview of the NLP gene family of N. parvum and provides additional insights into its pathogenicity mechanism.