Project description:Melanoma is one of the most aggressive and treatment-resistant cancers. It represents the most life-threatening neoplasm of the skin, and its incidence has been increasing for the last three decades. Melanoma evolves from the local transformation of melanocytes to primary tumors, which can metastasize to multiple organs. Brain metastases represent one of the most significant causes of death in cutaneous melanoma patients. Despite aggressive multi-modality threapy, patients with melanoma brain metastasis have a median survival of less than a year, with a majority of these patients dying as a result of their intracranial disease. We aimed to find brain metastasis-specific molecular markers. To identify alterations in DNA methylation related to brain metastasis, we used Illumina 450K BeadChips to assess differentially methylated regions in melanocytes, primary melanomas, lymph node metastases, and brain metastases. Bisulphite-converted DNA from 40 specimens was hybridised to the Illumina Infinium 450k Human Methylation BeadChip.
Project description:Gene methylation profiling of immortalized human mesenchymal stem cells comparing HPV E6/E7-transfected MSCs cells with human telomerase reverse transcriptase (hTERT)- and HPV E6/E7-transfected MSCs. hTERT may increase gene methylation in MSCs. Goal was to determine the effects of different transfected genes on global gene methylation in MSCs.
Project description:We established a model of human melanoma metastasis to identify differentially expressed genes in brain metastasis, compared to cutaneous melanoma from which they were developed. Such genes may control brain metastasis. The identification and characterization of these genes would advance the understanding of the metastatic process and may lead to new diagnostics and therapeutic approach. Brain metastases occur in almost 40% of melanoma patients. The median survival of such patients does not exceed a few months. Very little information is available on mechanisms underlying the progression of melanoma towards brain metastasis. The function, and significance of the various factors involved in melanoma progression must be deciphered using relevant models. Currently, most human melanoma brain metastasis models consist of xenografted cells inoculated into immune-deficient mice mainly by intracarotid or intra-cardiac administration. We generated a reproducible melanoma brain metastasis model, consisting of brain-metastasizing variants and local, sub-dermal variants that originate from the same melanomas thus sharing a common genetic background. The brain metastasizing variants were obtained by intra-cardiac inoculation. One of the brain metastasizing variants when inoculated sub-dermally yielded spontaneous brain dormant micrometastasis. Cells from the spontaneous brain micrometastasis when removed from the brain microenvironment proliferate very well in vitro and generate tumors in the skin being the orthotopic organ site. The brain metastasis and micro-metastasis cells expressed higher levels of ANGPTL4, COX-2, MMP1, MMP2 and PRAME and lower levels of CLDN1, CYR61 and IL-6R than the cutaneous variants. These gene products may be involved in melanoma brain metastasis and may serve as novel brain metastasis biomarkers and targets for therapy. 8 Samples (arrays) were analyzed. We generated pairwise comparisons between cutaneous and brain metastatic variants of the same genetic background, using Partek Genomics Suite, in the three melanoma models. Genes with pM-bM-^IM-$5% and a fold-change difference of M-bM-^IM-%1.25 or <-1.25 were selected.
Project description:Using 1 melanocyte and 6 melanoma cell line (3 pair of primary and metastatic), we generated base-resolution DNA methylation maps to document DNA methylation drivers of melanoma metastasis. Here we generated single-nucleotide resoultion DNA methylation map of a total of 7 cell lines using Reduced Representation Bisulfite Sequencing (RRBS)
Project description:Gene methylation profiling of immortalized human mesenchymal stem cells comparing HPV E6/E7-transfected MSCs cells with human telomerase reverse transcriptase (hTERT)- and HPV E6/E7-transfected MSCs. hTERT may increase gene methylation in MSCs. Goal was to determine the effects of different transfected genes on global gene methylation in MSCs. Two-condition experiment, KP MSCs vs. 3A6 MSCs.
Project description:We established a model of human melanoma metastasis to identify differentially expressed genes in brain metastasis, compared to cutaneous melanoma from which they were developed. Such genes may control brain metastasis. The identification and characterization of these genes would advance the understanding of the metastatic process and may lead to new diagnostics and therapeutic approach. Brain metastases occur in almost 40% of melanoma patients. The median survival of such patients does not exceed a few months. Very little information is available on mechanisms underlying the progression of melanoma towards brain metastasis. The function, and significance of the various factors involved in melanoma progression must be deciphered using relevant models. Currently, most human melanoma brain metastasis models consist of xenografted cells inoculated into immune-deficient mice mainly by intracarotid or intra-cardiac administration. We generated a reproducible melanoma brain metastasis model, consisting of brain-metastasizing variants and local, sub-dermal variants that originate from the same melanomas thus sharing a common genetic background. The brain metastasizing variants were obtained by intra-cardiac inoculation. One of the brain metastasizing variants when inoculated sub-dermally yielded spontaneous brain dormant micrometastasis. Cells from the spontaneous brain micrometastasis when removed from the brain microenvironment proliferate very well in vitro and generate tumors in the skin being the orthotopic organ site. The brain metastasis and micro-metastasis cells expressed higher levels of ANGPTL4, COX-2, MMP1, MMP2 and PRAME and lower levels of CLDN1, CYR61 and IL-6R than the cutaneous variants. These gene products may be involved in melanoma brain metastasis and may serve as novel brain metastasis biomarkers and targets for therapy.
Project description:Genome wide DNA methylation profiling of brain metastasis from colorectal and lung cancer. The Illumina Infinium MethylationEPIC was used to obtain DNA methylation profiles across approximately 850,000 CpGs in brain metastasis samples. Samples included 1 breast ductal invasive carcinoma, 4 colon adenocarcinoma, 1 melanoma, 1 multiple mieloma, 7 non small cell lung cancer adenocarcinoma, 3 non small cell lung cancer G3, 4 non small cell lung cancer SCC, 1 prostate cancer adenocarcinoma and 1 serous carcinoma.
Project description:SPO11-promoted DNA double-strand breaks (DSBs) formation is a crucial step for meiotic recombination, and it is indispensable to detect the broken DNA ends accurately for dissecting the molecular mechanisms behind. Here, we report a novel technique, named DEtail-seq (DNA End tailing followed by sequencing), that can directly and quantitatively capture the meiotic DSB 3’ overhang hotspots at single-nucleotide resolution.