Project description:Epigenetic alterations play significant roles in the melanoma tumorigenesis and malignant progression. We profiled genome-wide promoter DNA methylation patterns of melanoma cells deribed from primary lesions of Radial Growrth phase (RGP) and Vertical Growth Phase (VGP), metastatic lesions, and primary normal melanocytes by interrogating 14,495 genes using Illumina bead chip technology. By comparative analysis of the promoter methylation profiles, we identified epigenetically silenced gene signatures that potentially associated with malignant melanoma progression.
Project description:Epigenetic alterations play significant roles in the melanoma tumorigenesis and malignant progression. We profiled genome-wide promoter DNA methylation patterns of melanoma cells deribed from primary lesions of Radial Growrth phase (RGP) and Vertical Growth Phase (VGP), metastatic lesions, and primary normal melanocytes by interrogating 14,495 genes using Illumina bead chip technology. By comparative analysis of the promoter methylation profiles, we identified epigenetically silenced gene signatures that potentially associated with malignant melanoma progression. Bisulphite converted genomic DNA from a group of melanoma cells representing pathologic stages of melanoma progression (3 cell lines derived from RGP melanoma lesions, 4 cell lines derived from VGP lesions, and 3 melastatic melanomas) and normal human primary melanocytes isolated from lightly pigmented adult skin were hybridized to Illumina's Infinium HumanMethylation27 BeadChips
Project description:Gene methylation profiling of immortalized human mesenchymal stem cells comparing HPV E6/E7-transfected MSCs cells with human telomerase reverse transcriptase (hTERT)- and HPV E6/E7-transfected MSCs. hTERT may increase gene methylation in MSCs. Goal was to determine the effects of different transfected genes on global gene methylation in MSCs.
Project description:The implication of epigenetic alterations in the pathogenesis of melanoma is increasingly recognized. Here we performed genome-wide DNA methylation analysis of primary cutaneous melanoma and benign melanocytic naevus interrogating 14,495 genes using beadchip technology. This first genome-wide view of promoter methylation in primary cutaneous melanoma revealed an array of recurrent DNA methylation alterations with potential diagnostic applications. Among 106 frequently hypermethylated genes there were many novel methylation targets and tumor suppressor genes. Highly recurrent methylation of the HOXA9, MAPK13, CDH11, PLEKHG6, PPP1R3C and CLDN11genes was established. Promoter methylation of MAPK13, encoding p38?, was present in 67% of primary and 85% of metastatic melanomas. Restoration of MAPK13 expression in melanoma cells exhibiting epigenetic silencing of this gene reduced proliferation, indicative of tumor suppressive functions. This study demonstrates that DNA methylation alterations are widespread in melanoma and suggests that epigenetic silencing of MAPK13 contributes to melanoma progression. Bisulphite converted genomic DNA from 5 fresh-frozen benign naevus and 24 fresh-frozen primary melanoma biopsy samples were hybridised to Illumina's Infinium HumanMethylation27 Beadchips