Project description:In response to carbon source switching from glucose to non-glucose, such as ethanol and galactose, yeast cells can directionally preprogram cellular metabolism to efficiently utilize the nutrients. However, the understanding of cellular responsive network to utilize a non-natural carbon source, such as xylose, is limited due to the incomplete knowledge on the xylose response mechanisms. Here, through optimization of the xylose assimilation pathway together with combinational evaluation of reported targets, we generated a series of mutants with varied growth ability. However, understanding how cells respond to xylose and remodel cellular metabolic network is far insufficient based on current information. Therefore, genome-scale transcriptional analysis was performed to unravel the cellular reprograming mechanisms underlying the improved growth phenotype.
Project description:Second fermentation in a bottle supposes such specific conditions that undergo yeasts to a set of stress situations like high ethanol, low nitrogen, low pH or sub-optimal temperature. Also, yeast have to grow until 1 or 2 generations and ferment all sugar available while they resist increasing CO2 pressure produced along with fermentation. Because of this, yeast for second fermentation must be selected depending on different technological criteria such as resistance to ethanol, pressure, high flocculation capacity, and good autolytic and foaming properties. All of these stress factors appear sequentially or simultaneously, and their superposition could amplify their inhibitory effects over yeast growth. Considering all of the above, it has supposed interesting to characterize the adaptive response of commercial yeast strain EC1118 during second-fermentation experiments under oenological/industrial conditions by transcriptomic profiling. We have pointed ethanol as the most relevant environmental condition in the induction of genes involved in respiratory metabolism, oxidative stress, autophagy, vacuolar and peroxisomal function, after comparison between time-course transcriptomic analysis in alcoholic fermentation and transcriptomic profiling in second fermentation. Other examples of parallelism include overexpression of cellular homeostasis and sugar metabolism genes. Finally, this study brings out the role of low-temperature on yeast physiology during second-fermentation.
Project description:Ire1 is an endoplasmic reticulum (ER)-located transmembrane protein that triggers the unfolded protein response. I recently noticed that Ire1 is activated not only in response to ER accumulation of unfolded proteins but also alongside diauxic shift in yeast Saccharomyces cerevisiae cells. I thus asked how different the Ire1-target genes upon two distinct scenes, a canonical ER -stressing stimuli and diauxic shift. Thus NGS transcriptome analysis was performed by using IRE1+ and ire1-delta mutant yeast cells under these conditions.