Project description:In a previous study, we identified extensive natural variation in the response to acute ethanol treatment in three yeast strains: a lab strain derived from the commonly used S288c (DBY8268), vineyard isolate M22, and oak soil strain YPS163. Many expression differences persisted across several modules of co-regulated genes, implicating trans-acting systemic differences in ethanol sensing and/or response. To understand the genetic basis for these expression differences, we performed eQTL mapping analysis of the response to acute ethanol stress in ~100 F2 strains from two crosses: DBY8268x M22 and DBY8268 x YPS163. We measured the gene expression response to acute ethanol stress (5% for 30 min) in 6 replicates for the parental strains, and in biological duplicate for the eQTL mapping population. Dye swaps were performed in the replicates to control for dye-specific effects.
Project description:In a previous study, we identified extensive natural variation in the response to acute ethanol treatment in three yeast strains: a lab strain derived from the commonly used S288c (DBY8268), vineyard isolate M22, and oak soil strain YPS163. Many expression differences persisted across several modules of co-regulated genes, implicating trans-acting systemic differences in ethanol sensing and/or response. To understand the genetic basis for these expression differences, we performed eQTL mapping analysis of the response to acute ethanol stress in ~100 F2 strains from two crosses: DBY8268x M22 and DBY8268 x YPS163.
Project description:Second fermentation in a bottle supposes such specific conditions that undergo yeasts to a set of stress situations like high ethanol, low nitrogen, low pH or sub-optimal temperature. Also, yeast have to grow until 1 or 2 generations and ferment all sugar available while they resist increasing CO2 pressure produced along with fermentation. Because of this, yeast for second fermentation must be selected depending on different technological criteria such as resistance to ethanol, pressure, high flocculation capacity, and good autolytic and foaming properties. All of these stress factors appear sequentially or simultaneously, and their superposition could amplify their inhibitory effects over yeast growth. Considering all of the above, it has supposed interesting to characterize the adaptive response of commercial yeast strain EC1118 during second-fermentation experiments under oenological/industrial conditions by transcriptomic profiling. We have pointed ethanol as the most relevant environmental condition in the induction of genes involved in respiratory metabolism, oxidative stress, autophagy, vacuolar and peroxisomal function, after comparison between time-course transcriptomic analysis in alcoholic fermentation and transcriptomic profiling in second fermentation. Other examples of parallelism include overexpression of cellular homeostasis and sugar metabolism genes. Finally, this study brings out the role of low-temperature on yeast physiology during second-fermentation.
Project description:To better understand how yeast adapt and respond to sequential stressors, an industrial yeast strain, URM 6670 (also known as BT0510), which is highly flocculent, tolerant to ethanol, osmotic and heat shock stresses, was subjected to three different treatments: 1. osmotic stress followed by ethanol stress, 2. oxidative stress followed by ethanol stress, 3. glucose withdrawal followed by ethanol stress. Samples were collected before the first stress (control), after the first stress and after the second stress (ethanol). RNA was extracted and analyzed by RNAseq.
Project description:We used genome-wide expression analyses to study the response of Saccharomyces cerevisiae to stress throughout a 15-day wine fermentation. Forty percent of the yeast genome significantly changed expression levels to mediate long-term adaptation to an environment in which ethanol is both a stressor and a carbon source. Within this set, we identify a group of 223 genes, designated as the Fermentation Stress Response (FSR), that are dramatically and permanently induced; FSR genes exhibited changes ranging from four-to eighty-fold. The FSR is novel; 62% of the genes involved have not been implicated in global stress responses and 28% of the genes have no functional annotation. Genes involved in respiratory metabolism and gluconeogenesis were expressed during fermentation despite the presence of high concentrations of glucose. Ethanol, rather than nutrient depletion, was responsible for entry of yeast cells into stationary phase. Ethanol seems to regulate yeast metabolism through hitherto undiscovered regulatory networks during wine fermentation. Keywords: time course, stress response, fermentation