Project description:Deep seas marine fungus SST2-VLC fractions. Isolated from soil sediment from South Shetland Trench, Antarctica (-58.90865, -61.122976, ~5100 m). Large scale fermentation on rice medium followed by subsequent methanol extraction. Finally, vacuum liquid chromatography was completed using an increasing gradient from hexane-dichloromethane-methanol.
Project description:The Gram-negative alphaproteobacterium Octadecabacter temperatus SB1 (DSM 26878) belongs to the marine Roseobacter clade. The genome of this strain is the smallest closed genome of the Roseobacter clade. O. temperatus SB1 is the first described nonpolar mesophilic isolate of the genus Octadecabacter and the type strain of the species.
Project description:Investigation of whole genome gene expression level in Pseudozyma antarctica T-34, compared to Ustilago maydis UM521. To clarify the transcriptomic characteristics of Pseudozyma antarctica under the conditions of high MEL production, a DNA microarray of both the strains, Pseudozyma antarctica T-34 and Ustilago maydis UM521 was prepared and analyzed the transcriptomes.
Project description:Coastal Antarctic marine ecosystems play an important role in carbon cycling due to their highly productive seasonal phytoplankton blooms. Southern Ocean microbes are primarily limited by light and iron (Fe) and can be co-limited by cobalamin (vitamin B12 ). Micronutrient limitation is a key driver of ecosystem dynamics and influences the composition of blooms, which are often dominated by either diatoms or the haptophyte Phaeocystis antarctica, each with varied impacts on carbon cycling. However, the vitamin requirements and ecophysiology of the keystone species P. antarctica remains poorly characterized. Using cultures, physiological analysis, and comparative ’omics we examined the response of P. antarctica to a matrix of Fe-B12 conditions. We show that P. antarctica is not auxotrophic for B12 , as previously suggested, and report new mechanistic insights of its B12 response in cultures of predominantly solitary and colonial cells. Proteomics coupled with proteogenomics detected a B12 -independent methionine synthase fusion protein (MetE-fusion) that is expressed under vitamin limitation and is interreplaced with the B12 -dependent isoform (MetH) in replete conditions. Database searches returned homologs of the MetE-fusion protein in multiple Phaeocystis species and in a wide range of marine microbes, including other photosynthetic eukaryotes with polymorphic life cycles and also bacterioplankton. Furthermore, MetE-fusion homologs were found to be expressed in metaproteomic and metatranscriptomic field samples in polar and more geographically widespread regions. As climate change impacts micronutrient availability in the coastal Southern Ocean, our finding that P. antarctica has a flexible B12 metabolism has implications for its relative fitness compared to B12 -auxotrophic diatoms.