Project description:To study the effect of stress on macrophages due to Toxoplasma, we stimulated murine bone marrow-derived macrophages (BMDMs) with IFN-γ (no-stimulate control) and infected them with the apicomplexan parasite Toxoplasma gondii. scRNA-Seq (10X Chromium genomics ) was performed to understand the changes in the immune cells and study the impact of the parasite.
Project description:The Toxoplasma type I ROP16 kinase directly activates the host STAT3 and STAT6 transcription factors and regulates the expression of many host genes. However, many of genes lack known STAT3/6 transcription factor binding sites in their promoter regions. We wanted to understand what fraction of host genes that are modulated by ROP16 were dependent on the STAT3 and STAT6 signaling pathways. Bone marrow-derived macrophages (BMMs) from mLys-Mcre Stat3fl/fl mice were infected with type II (Pru A7), type II +ROP16 I, type II Δgra15, or type II Δgra15 + ROP16I and gene expression was analyzed 18 hrs after infection. This data set was generated side by side with infections performed in B6 BMDMs, the gene expression results for that experiment were previoiusly submitted under the GEO accession number GSE29404. In addition, gene expression of wild type B6 and Stat6-/- BMDMs were infected with the II+ROP16I strain.
Project description:The ability of Toxoplasma gondii to inject the rhoptry kinase ROP16 into host cells results in the activation of the transcription factors STAT3 and STAT6, but it is unclear how these events impact infection. Here, parasites that inject Cre-recombinase with rhoptry proteins were used to distinguish infected macrophages from those only injected with parasite proteins. Transcriptional profiling revealed that injection of rhoptry proteins alone was sufficient to induce an M2 phenotype that is dependent on STAT3 and STAT6, but only infected cells displayed reduced expression of anti-microbial genes and antigen presentation pathways. In vivo, the absence of STAT3 or STAT6 improved parasite control while the loss of ROP16 resulted in a marked reduction in parasite numbers and heightened parasite-specific T cell responses. Thus, ROP16 is a virulence factor that can act in cis and trans to promote M2 programs and which limits the magnitude of parasite-specific T cell responses.
Project description:The ability of Toxoplasma gondii to inject the rhoptry kinase ROP16 into host cells results in the activation of the transcription factors STAT3 and STAT6, but it is unclear how these events impact infection. Here, parasites that inject Cre-recombinase with rhoptry proteins were used to distinguish infected macrophages from those only injected with parasite proteins. Transcriptional profiling revealed that injection of rhoptry proteins alone was sufficient to induce an M2 phenotype that is dependent on STAT3 and STAT6, but only infected cells displayed reduced expression of anti-microbial genes and antigen presentation pathways. In vivo, the absence of STAT3 or STAT6 improved parasite control while the loss of ROP16 resulted in a marked reduction in parasite numbers and heightened parasite-specific T cell responses. Thus, ROP16 is a virulence factor that can act in cis and trans to promote M2 programs and which limits the magnitude of parasite-specific T cell responses.
Project description:The closely related protozoan parasites Toxoplasma gondii and Neospora caninum display similar life cycles, subcellular ultrastructure, invasion mechanisms, metabolic pathways, and genome organization, but differ in their host range and disease pathogenesis. Type II (?) interferon has long been known to be the major mediator of innate and adaptive immunity to Toxoplasma infection, but genome-wide expression profiling of infected host cells indicates that Neospora is a potent activator of the type I (?/?) interferon pathways typically associated with antiviral responses. Infection of macrophages from mice with targeted deletions in various innate sensing genes demonstrates that host responses to Neospora are dependent on the toll-like receptor Tlr3 and the adapter protein Trif. Consistent with this observation, RNA from Neospora elicits type I interferon responses when targeted to the host endo-lysosomal system. While live Toxoplasma fails to induce type I interferon, heat-killed parasites do trigger this response, and co-infection studies reveal that T. gondii actively suppresses the production of type I interferon. These findings reveal that eukaryotic pathogens can be potent inducers of type I interferon and that some parasite species, like Toxoplasma gondii, have evolved mechanisms to suppress this response. In vitro cultures of bone marrow-derived macrophages from WT or IFNAR2-/- mice were infected with either Toxoplasma gondii (VEG strain) or Neospora caninum (Nc2 strain) for 17 hours. RNA was collected from biological replicates for expression profiling by microarray. Uninfected controls for both WT and IFNAR2-/- were used as a reference.
Project description:Differential macrophage activation mediate genetic differences to a variety of inflammatory pathologies. We wanted to elucidate the transcriptional and regulatory programs regulating differential macrophage activation in genetically diverse mouse strains. Bone marrow-derived macrophages (BMDMs) from AJ and C57BL/6j mice were left unstimulated, stimulated with IFN/TNF, or IL-4, or CpG, or LPS or IFN/TNF and infected with a type II (Pru A7) strain of Toxoplasma gondii, or infected with Pru A7 and gene expression analyzed 18 hrs later.
Project description:Intracellular pathogens including the apicomplexan and opportunistic parasite Toxoplasma gondii profoundly modify their host cells in order to establish infection. We have shown previously that intracellular T. gondii inhibit up-regulation of regulatory and effector functions in murine macrophages (MΦ) stimulated with interferon (IFN)-γ, which is the cytokine crucial for controlling the parasites’ replication. Using genome-wide transcriptome analysis we show herein that infection with T. gondii leads to global unresponsiveness of murine macrophages to IFN-γ. More than 61% and 89% of the transcripts, which were induced or repressed by IFN-γ in non-infected MΦ, respectively, were not altered after stimulation of T. gondii-infected cells with IFN-γ. These genes are involved in a variety of biological processes, which are mostly but not exclusively related to immune responses. Analyses of the underlying mechanisms revealed that IFN-γ-triggered nuclear translocation of STAT1 still occurred in Toxoplasma-infected MΦ. However, STAT1 bound aberrantly to oligonucleotides containing the IFN-γ-responsive gamma-activated site (GAS) consensus sequence. Conversely, IFN-γ did not induce formation of active GAS-STAT1 complexes in nuclear extracts from infected MΦ. Mass spectrometry of protein complexes bound to GAS oligonucleotides showed that T. gondii-infected MΦ are unable to recruit non-muscle actin to IFN-γ-responsive DNA sequences, which appeared to be independent of stimulation with IFN-γ and of STAT1 binding. IFN-γ-induced recruitment of BRG-1 and acetylation of core histones at the IFN-γ-regulated CIITA promoter IV, but not β-actin was diminished by >90% in Toxoplasma-infected MΦ as compared to non-infected control cells. Remarkably, treatment with histone deacetylase inhibitors restored the ability of infected macrophages to express the IFN-γ regulated genes H2-A/E and CIITA. Taken together, these results indicate that Toxoplasma-infected MΦ are unable to respond to IFN-γ due to disturbed chromatin remodelling, but can be rescued using histone deacetylase inhibitors. Comparison of 4 different RNA pools with a 2-Color-Loop Design including 10 microarrays: [1] T. gondii infected and IFN-gamma treated, [2] T. gondii infected and untreated, [3] Non-infected and IFN-gamma treated, and [4] Non-infected and untreated.
Project description:Intracellular pathogens including the apicomplexan and opportunistic parasite Toxoplasma gondii profoundly modify their host cells in order to establish infection. We have shown previously that intracellular T. gondii inhibit up-regulation of regulatory and effector functions in murine macrophages (MΦ) stimulated with interferon (IFN)-γ, which is the cytokine crucial for controlling the parasites’ replication. Using genome-wide transcriptome analysis we show herein that infection with T. gondii leads to global unresponsiveness of murine macrophages to IFN-γ. More than 61% and 89% of the transcripts, which were induced or repressed by IFN-γ in non-infected MΦ, respectively, were not altered after stimulation of T. gondii-infected cells with IFN-γ. These genes are involved in a variety of biological processes, which are mostly but not exclusively related to immune responses. Analyses of the underlying mechanisms revealed that IFN-γ-triggered nuclear translocation of STAT1 still occurred in Toxoplasma-infected MΦ. However, STAT1 bound aberrantly to oligonucleotides containing the IFN-γ-responsive gamma-activated site (GAS) consensus sequence. Conversely, IFN-γ did not induce formation of active GAS-STAT1 complexes in nuclear extracts from infected MΦ. Mass spectrometry of protein complexes bound to GAS oligonucleotides showed that T. gondii-infected MΦ are unable to recruit non-muscle actin to IFN-γ-responsive DNA sequences, which appeared to be independent of stimulation with IFN-γ and of STAT1 binding. IFN-γ-induced recruitment of BRG-1 and acetylation of core histones at the IFN-γ-regulated CIITA promoter IV, but not β-actin was diminished by >90% in Toxoplasma-infected MΦ as compared to non-infected control cells. Remarkably, treatment with histone deacetylase inhibitors restored the ability of infected macrophages to express the IFN-γ regulated genes H2-A/E and CIITA. Taken together, these results indicate that Toxoplasma-infected MΦ are unable to respond to IFN-γ due to disturbed chromatin remodelling, but can be rescued using histone deacetylase inhibitors.