Project description:Antibiotic resistance among pathogenic microorganisms is becoming ever more common. Unfortunately, the development of new antibiotics which may combat resistance has decreased. Recently, however the oceans and the marine animals that reside there have received increased attention as a potential source for natural product discovery. Many marine eukaryotes interact and form close associations with microorganisms that inhabit their surfaces, many of which can inhibit the attachment, growth or survival of competitor species. It is the bioactive compounds responsible for the inhibition that is of interest to researchers on the hunt for novel bioactives. The genus Pseudovibrio has been repeatedly identified from the bacterial communities isolated from marine surfaces. In addition, antimicrobial activity assays have demonstrated significant antimicrobial producing capabilities throughout the genus. This review will describe the potency, spectrum and possible novelty of the compounds produced by these bacteria, while highlighting the capacity for this genus to produce natural antimicrobial compounds which could be employed to control undesirable bacteria in the healthcare and food production sectors.
Project description:Marine planktonic bacteria often live in habitats with extremely low concentrations of dissolved organic matter (DOM). To study the use of trace amounts of DOM by the facultatively oligotrophic Pseudovibrio sp. FO-BEG1, we investigated the composition of artificial and natural seawater before and after growth. We determined the concentrations of dissolved organic carbon (DOC), total dissolved nitrogen (TDN), free and hydrolysable amino acids, and the molecular composition of DOM by electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI FT-ICR-MS). The DOC concentration of the artificial seawater we used for cultivation was 4.4 μmol C L(-1), which was eight times lower compared to the natural oligotrophic seawater we used for parallel experiments (36 μmol C L(-1)). During the three-week duration of the experiment, cell numbers increased from 40 cells mL(-1) to 2x10(4) cells mL(-1) in artificial and to 3x10(5) cells mL(-1) in natural seawater. No nitrogen fixation and minor CO2 fixation (< 1% of cellular carbon) was observed. Our data show that in both media, amino acids were not the main substrate for growth. Instead, FT-ICR-MS analysis revealed usage of a variety of different dissolved organic molecules, belonging to a wide range of chemical compound groups, also containing nitrogen. The present study shows that marine heterotrophic bacteria are able to proliferate with even lower DOC concentrations than available in natural ultra-oligotrophic seawater, using unexpected organic compounds to fuel their energy, carbon and nitrogen requirements.
Project description:Pseudovibrio a-Proteobacteria have been repeatedly isolated from marine sponges and proposed to be beneficial to the host. Bacterial motility is known to contribute to host colonization. We have previously identified pseudovibriamides A and B, produced in culture by Pseudovibrio brasiliensis Ab134, and shown that pseudovibriamide A promotes flagellar motility. Pseudovibriamides are encoded in a hybrid nonribosomal peptide synthetase-polyketide synthase gene cluster that also includes several accessory genes. Pseudovibriamide A is a linear heptapeptide and pseudovibriamide B is a nonadepsipeptide derived from pseudovibriamide A. Here we define the borders of the pseudovibriamides gene cluster, assign function to biosynthetic genes using reverse genetics and test the hypothesis that pseudovibriamides impact motility by modulating gene transcription. RNA-seq transcriptomic analyses of strains having different compositions of pseudovibriamides suggested that both pseudovibriamides A and B affect genes potentially involved in motility, and that a compensatory mechanism is at play in mutants that produce only pseudovibriamide A, resulting in comparable swarming motility as the wild type. The data gathered suggest that pseudovibriamides A and B have opposite roles in modulating a subset of genes, with pseudovibriamide B having a primary effect in gene activation, and pseudovibriamide A on inhibition. Finally, we observed many differentially expressed genes (up to 29% of the total gene number) indicating that pseudovibriamides have a global effect on transcription that goes beyond motility.
Project description:Marine sponges represent one of the few eukaryotic groups that ubiquitously harbor symbiotic members of the Thaumarchaeota, which are important chemoautotrophic ammonia-oxidizers in many environments. However in most studies, direct demonstration of ammonia-oxidation by these archaea within sponges is lacking, and little is known about sponge-specific adaptations of archaeal ammonia oxidizers (AOA). In this study, we characterized the thaumarchaeal symbiont of the marine sponge Ianthella basta using metaproteogenomics, fluorescence in situ hybridization, qPCR and direct isotope-based functional assays. We demonstrate that the I. basta symbiont is not closely related to other genomically sequenced sponge AOA and is a member of a new genus. “Candidatus Nitrosospongia bastadiensis” is an abundant symbiont that is solely responsible for nitrite formation from ammonia in I. basta that surprisingly does not harbor nitrite-oxidizing microbes. Consistently, Ca N. bastadiensis encodes and expresses the genetic repertoire required for chemolithoautotrophic ammonia oxidation. Furthermore, we show that this AOA is equipped with an expanded set of extracellular subtilisin-like proteases, a metalloprotease unique among archaea, as well as a putative branched-chain amino acid ABC transporter. This repertoire is strongly indicative of a mixotrophic lifestyle and is (with slight variations) also found in other sponge-associated, but not in free-living AOA. We predict that this feature as well as an expanded and unique set of secreted serpins (protease inhibitors), a unique array of eukaryotic-like proteins, and a DNA-phosporothioation system likely involved in defense against foreign DNA, represent important adaptations of AOA to life within these ancient filter-feeding animals.
Project description:Phosphorus is an essential nutrient for all living organisms. In bacteria, the preferential phosphorus source is phosphate, which is often a limiting macronutrient in many areas of the ocean. The geochemical cycle of phosphorus is strongly interconnected with the cycles of other elements and especially iron, because phosphate tends to adsorb onto iron minerals, such as iron oxide formed in oxic marine environments. Although the response to either iron or phosphate limitation has been investigated in several bacterial species, the metabolic interplay between these two nutrients has rarely been considered. In this study we evaluated the impact of phosphate limitation on the iron metabolism of the marine bacterium Pseudovibrio sp. FO-BEG1. We observed that phosphate limitation led to an initial decrease of soluble iron in the culture up to three times higher than under phosphate surplus conditions. Similarly, a decrease in soluble cobalt was more pronounced under phosphate limitation. These data point toward physiological changes induced by phosphate limitation that affect either the cellular surface and therefore the metal adsorption onto it or the cellular metal uptake. We discovered that under phosphate limitation strain FO-BEG1, as well as selected strains of the Roseobacter clade, secreted iron-chelating molecules. This leads to the hypothesis that these bacteria might release such molecules to dissolve iron minerals, such as iron-oxyhydroxide, in order to access the adsorbed phosphate. As the adsorption of phosphate onto iron minerals can significantly decrease phosphate concentrations in the environment, the observed release of iron-chelators might represent an as yet unrecognized link between the biogeochemical cycle of phosphorus and iron, and it suggests another biological function of iron-chelating molecules in addition to metal-scavenging.
Project description:Surface-associated marine bacteria often produce secondary metabolites with antagonistic activities. In this study, tropodithietic acid (TDA) was identified to be responsible for the antibacterial activity of the marine epiphytic bacterium Pseudovibrio sp. D323 and related strains. Phenol was also produced by these bacteria but was not directly related to the antibacterial activity. TDA was shown to effectively inhibit a range of marine bacteria from various phylogenetic groups. However TDA-producers themselves were resistant and are likely to possess resistance mechanism preventing autoinhibition. We propose that TDA in isolate D323 and related eukaryote-associated bacteria plays a role in defending the host organism against unwanted microbial colonisation and, possibly, bacterial pathogens.
Project description:Oceanic dissolved organic matter (DOM) is an assemblage of reduced carbon compounds, which results from biotic and abiotic processes. The biotic processes consist in either release or uptake of specific molecules by marine organisms. Heterotrophic bacteria have been mostly considered to influence the DOM composition by preferential uptake of certain compounds. However, they also secrete a variety of molecules depending on physiological state, environmental and growth conditions, but so far the full set of compounds secreted by these bacteria has never been investigated. In this study, we analyzed the exo-metabolome, metabolites secreted into the environment, of the heterotrophic marine bacterium Pseudovibrio sp. FO-BEG1 via ultra-high resolution mass spectrometry, comparing phosphate limited with phosphate surplus growth conditions. Bacteria belonging to the Pseudovibrio genus have been isolated worldwide, mainly from marine invertebrates and were described as metabolically versatile Alphaproteobacteria. We show that the exo-metabolome is unexpectedly large and diverse, consisting of hundreds of compounds that differ by their molecular formulae. It is characterized by a dynamic recycling of molecules, and it is drastically affected by the physiological state of the strain. Moreover, we show that phosphate limitation greatly influences both the amount and the composition of the secreted molecules. By assigning the detected masses to general chemical categories, we observed that under phosphate surplus conditions the secreted molecules were mainly peptides and highly unsaturated compounds. In contrast, under phosphate limitation the composition of the exo-metabolome changed during bacterial growth, showing an increase in highly unsaturated, phenolic, and polyphenolic compounds. Finally, we annotated the detected masses using multiple metabolite databases. These analyses suggested the presence of several masses analogue to masses of known bioactive compounds. However, the annotation was successful only for a minor part of the detected molecules, underlining the current gap in knowledge concerning the biosynthetic ability of marine heterotrophic bacteria.