Project description:Stem cell biology has garnered much attention due to its potential to impact human health through disease modeling and cell replacement therapy. This is especially pertinent to myelin-related disorders such as multiple sclerosis and leukodystrophies where restoration of normal oligodendrocyte function could provide an effective treatment. Progress in myelin repair has been constrained by the difficulty in generating pure populations of oligodendrocyte progenitor cells (OPCs) in sufficient quantities. Pluripotent stem cells theoretically provide an unlimited source of OPCs but significant advances are currently hindered by heterogeneous differentiation strategies that lack reproducibility. Here we provide a platform for the directed differentiation of pluripotent mouse epiblast stem cells (EpiSCs) through a defined series of developmental transitions into a pure population of highly expandable OPCs in ten days. These OPCs robustly differentiate into myelinating oligodendrocytes both in vitro and in vivo. Our results demonstrate that pluripotent stem cells can provide a pure population of clinically-relevant, myelinogenic oligodendrocytes and offer a tractable platform for defining the molecular regulation of oligodendrocyte development, drug screening, and potential cell-based remyelinating therapies. 6 total samples were analyzed. Pluripotent epiblast stem cells (EpiSCs) were differentiated to patterned neural rosettes, oligodendrocyte progenitor cells (OPCs), and oligodendrocytes. OPCs and oligodedrocytes were analyzed at two separate passages (3 and 11).
Project description:Cell-based therapies for myelin disorders, such as multiple sclerosis and leukodystrophies, require technologies to generate functional oligodendrocyte progenitor cells. Here we describe direct conversion of mouse embryonic and lung fibroblasts to ‘induced’ oligodendrocyte progenitor cells (iOPCs) using sets of either eight or three defined transcription factors. iOPCs exhibit a bipolar morphologyical and global gene expression profile molecular features consistent with bona fide OPCs. They can be expanded in vitro for at least five passages while retaining the ability to differentiate into induced multiprocessed oligodendrocytes. When transplanted to hypomyelinated mice, iOPCs are capable of ensheathing host axons and generating compact myelinmyelinating axons both in vitro and in vivo. Lineage conversion of somatic cells to expandable iOPCs provides a strategy to study the molecular control of oligodendrocyte lineage identity and may facilitate neurological disease modeling and autologous remyelinating therapies. 6 total samples were analyzed. MEFs were either untreated or infected with inducible lentiviral vectors containing the open reading frames of transcription factors. Samples were compared to bona fide OPCs.
Project description:Many studies have already shown the reprogramming of somatic cells into other cell types such as neural stem cells, blood progenitor cells, and hepatocytes by inducing combinations of transcription factors. One of the recent development in cellular reprogramming is the direct reprogramming, that can change cell fate towards different lineages. This strategy provides an alternative to the use of pluripotent stem cells ruling out the concerns of tumorigenicity caused by undifferentiated cell populations. Here, we generated induced oligodendrocyte progenitor cells (iOPCs) from mouse fibroblasts by direct reprogramming. The generated iOPCs are homogenous, self-renewing, and multipotent. Once differentiated, the somatic stem cells exhibit morphological and molecular characteristics of oligodendrocyte progenitor cells (OPCs). Thus, we demonstrated that terminally differentiated somatic cells can be converted into functional iOPCs by induction of transcription factors offering a new strategies to cure myelin disorders. To identify the global gene expression profiles of iOPCs, we analyzed total 6 samples.
Project description:Cell-based therapies for myelin disorders, such as multiple sclerosis and leukodystrophies, require technologies to generate functional oligodendrocyte progenitor cells. Here we describe direct conversion of mouse embryonic and lung fibroblasts to ‘induced’ oligodendrocyte progenitor cells (iOPCs) using sets of either eight or three defined transcription factors. iOPCs exhibit a bipolar morphologyical and global gene expression profile molecular features consistent with bona fide OPCs. They can be expanded in vitro for at least five passages while retaining the ability to differentiate into induced multiprocessed oligodendrocytes. When transplanted to hypomyelinated mice, iOPCs are capable of ensheathing host axons and generating compact myelinmyelinating axons both in vitro and in vivo. Lineage conversion of somatic cells to expandable iOPCs provides a strategy to study the molecular control of oligodendrocyte lineage identity and may facilitate neurological disease modeling and autologous remyelinating therapies.
Project description:Stem cell biology has garnered much attention due to its potential to impact human health through disease modeling and cell replacement therapy. This is especially pertinent to myelin-related disorders such as multiple sclerosis and leukodystrophies where restoration of normal oligodendrocyte function could provide an effective treatment. Progress in myelin repair has been constrained by the difficulty in generating pure populations of oligodendrocyte progenitor cells (OPCs) in sufficient quantities. Pluripotent stem cells theoretically provide an unlimited source of OPCs but significant advances are currently hindered by heterogeneous differentiation strategies that lack reproducibility. Here we provide a platform for the directed differentiation of pluripotent mouse epiblast stem cells (EpiSCs) through a defined series of developmental transitions into a pure population of highly expandable OPCs in ten days. These OPCs robustly differentiate into myelinating oligodendrocytes both in vitro and in vivo. Our results demonstrate that pluripotent stem cells can provide a pure population of clinically-relevant, myelinogenic oligodendrocytes and offer a tractable platform for defining the molecular regulation of oligodendrocyte development, drug screening, and potential cell-based remyelinating therapies.
Project description:Many studies have already shown the reprogramming of somatic cells into other cell types such as neural stem cells, blood progenitor cells, and hepatocytes by inducing combinations of transcription factors. One of the recent development in cellular reprogramming is the direct reprogramming, that can change cell fate towards different lineages. This strategy provides an alternative to the use of pluripotent stem cells ruling out the concerns of tumorigenicity caused by undifferentiated cell populations. Here, we generated induced oligodendrocyte progenitor cells (iOPCs) from mouse fibroblasts by direct reprogramming. The generated iOPCs are homogenous, self-renewing, and multipotent. Once differentiated, the somatic stem cells exhibit morphological and molecular characteristics of oligodendrocyte progenitor cells (OPCs). Thus, we demonstrated that terminally differentiated somatic cells can be converted into functional iOPCs by induction of transcription factors offering a new strategies to cure myelin disorders.
Project description:One-step reprogramming of human fibroblasts into oligodendrocyte-like cells. We characterized the expression, chromatin accessibility and methylation profile of human oligodendrocyte-like cells derived using a new protocol for the direct transdifferentiation of human fibroblasts into oligodendrocyte-like cells. Direct conversion of fibroblasts was induced by ectopic overexpression of SOX10, OLIG2 and NKX6.2. The aim of the experiments was to characterise the transcriptional response and associated chromatin changes following transdifferentiation. In addition, profiles of primary human oligodendrocytes were produced.