Project description:The mechanisms of cellular and molecular adaptation of fungi to salinity have been commonly drawn from halotolerant strains, although some exceptions in basidiomycete fungi can be found. These studies have been conducted in settings where cells are subjected to stress, either hypo or hyperosmotic, which can be a confounding factor in describing physiological mechanisms related to salinity. Here, we have studied transcriptomic changes in Aspergillus sydowii, a halophilic species, when growing in three different salinity conditions (No salt, 0.5M and 2.0M NaCl). In this fungus salinity related responses occur under high salinity (2.0M NaCl) and not when cultured under optimal conditions (0.5M NaCl), suggesting that in this species, most of the mechanisms described for halophilic growth are a consequence of saline stress response and not an adaptation to saline conditions.
Project description:Chromatin immunoprecipitation DNA-sequencing (ChIP-seq) from TrmB in the halophilic archaeon Haloarcula hispanica in the presence and absense of glucose.
Project description:Wallemia sebi is a xerophilic food- and air-borne fungus. The name has been used for strains that prevail in cold, temperate and tropical climates. In this study, multi-locus phylogenetic analyses, using the internal transcribed spacer (ITS) regions, DNA replication licensing factor (MCM7), pre-rRNA processing protein (TSR1), RNA polymerase II largest subunit (RPB1), RNA polymerase II second largest subunit (RPB2) and a new marker 3´-phosphoadenosine-5´-phosphatase (HAL2), confirmed the previous hypothesis that W. sebi presents a complex of at least four species. Here, we confirm and apply the phylogenetic analyses based species hypotheses from a companion study to guide phenotypic assessment of W. sebi like strains from a wide range of substrates, climates and continents allowed the recognition of W. sebi sensu stricto and three new species described as W. mellicola, W. Canadensis, and W. tropicalis. The species differ in their conidial size, xerotolerance, halotolerance, chaotolerance, growth temperature regimes, extracellular enzyme activity profiles, and secondary metabolite patterns. A key to all currently accepted Wallemia species is provided that allow their identification on the basis of physiological, micromorphological and culture characters.
Project description:One of the most commonly encountered species in the small basidiomycetous sub-phylum Wallemiomycotina is Wallemiamellicola, a xerotolerant fungus with a widespread distribution. To investigate the population characteristics of the species, whole genomes of twenty-five strains were sequenced. Apart from identification of four strains of clonal origin, the distances between the genomes failed to reflect either the isolation habitat of the strains or their geographical origin. Strains from different parts of the world appeared to represent a relatively homogenous and widespread population. The lack of concordance between individual gene phylogenies and the decay of linkage disequilibrium indicated that W. mellicola is at least occasionally recombining. Two versions of a putative mating-type locus have been found in all sequenced genomes, each present in approximately half of the strains. W. mellicola thus appears to be capable of (sexual) recombination and shows no signs of allopatric speciation or specialization to specific habitats.
Project description:BackgroundWallemia ichthyophaga is a highly specialized basidiomycetous fungus. It is one of the most halophilic fungi ever described, only able to grow at low water activity. This specialization is thought to explain why it is only rarely isolated from nature.ResultsGenomes of 21 W. ichthyophaga strains were sequenced with PE150 reads on BGISEQ500 platform. The genomes shared high similarity with the reference genome of the species, they were all smaller than 10 Mbp and had a low number of predicted genes. Groups of strains isolated in the same location encompassed clones as well as very divergent strains. There was little concordance between phylogenies of predicted genes. Linkage disequilibrium of pairs of polymorphic loci decayed relatively quickly as a function of distance between the loci (LD decay distance 1270 bp). For the first time a putative mating-type locus was identified in the genomes of W. ichthyophaga.ConclusionBased on the comparison of W. ichthyophaga genomes it appears that some phylogenetic lineages of the species can persist in the same location over at least several years. Apart from this, the differences between the strains do not reflect the isolation habitat or geographic location. Together with results supporting the existence of (sexual) recombination in W. ichthyophaga, the presented results indicate that strains of W. ichthyophaga can form a single recombining population even between different habitats and over large geographical distances.