Project description:Unrestricted movement of mobile genetic elements could cause pre-mature lethality in Drosophila melanogaster. Specifically, retro transposons can disrupt genomic integrity through insertions, deletions and chromosomal rearrangements. Therefore, eukaryotes have developed defense mechanisms to silence these elements. In Drosophila, endogenous small interfering (endo-siRNAs) repress retro transposon mobility in somatic cells. The generation of endo-siRNAs requires Dicer-2 processing of double-stranded RNA precursors, yet the origins of this precursor are unknown. Here we show that retro transposons in Dmel-2 cells produce sense and antisense transcripts and identify bonafide transcription start sites for these RNAs. We determine that retro transposon antisense transcripts are less polyadenylated than sense transcripts. RNA-seq and small RNA-seq upon Dicer-2 depletion showed global decrease in endo-siRNAs mapping to retro transposons and increased expression of both S and AS retro transposon transcripts. These data support a model in which double-stranded RNA precursors are derived from convergent transcription and retained in the nucleus. Dicer-2 processes these precursors into endo-siRNAs that silence both sense and antisense retro transposon transcripts. Reduction of sense retro transposon transcripts potentially lowers element specific protein levels required for movement. This mechanism preserves genomic integrity and is especially important for Drosophila fitness because mobile genetic elements are highly active.
Project description:Despite their prominent role in transposon silencing, expression of endo-siRNAs is not limited to the “non-self” DNA elements. Transcripts of protein-coding genes (“self” DNA) in some cases also produce endo-siRNAs in yeast, plants, and animals [1]. How cells distinguish these two populations of siRNAs to prevent unwanted silencing of self-genes in animals is not well understood. To address this question, we examined the expression of ectopic siRNAs from an LTR retrotransposon in C. elegans germline. We found that the abundance of ectopic siRNAs was dependent on their homologous target genes: ectopic siRNAs against genes expressed only in somatic cells can be abundantly expressed. In contrast, ectopic siRNAs against germline-expressed genes are often suppressed. This phenomenon, which we termed “target-directed siRNA suppression”, is dependent on the target mRNA and requires germline P-granule components. We found that siRNA suppression can also occur to naturally produced endo-siRNAs. We suggest that siRNA suppression plays an important role in regulating siRNA expression and preventing self-genes from aberrant epigenetic silencing.
Project description:In the nematode Caenorhabditis elegans, different small RNA-dependent gene silencing mechanisms act in the germline to initiate transgenerational gene silencing. Piwi-interacting RNAs (piRNAs) can initiate transposon and gene silencing by acting upstream of endogenous short interfering RNAs (siRNAs), which engage a nuclear RNA interference (RNAi) pathway to trigger transcriptional gene silencing. Once gene silencing has been established, it can be stably maintained over multiple generations without the requirement of the initial trigger and is also referred to as RNAe or paramutation. This heritable silencing depends on the integrity of the nuclear RNAi pathway. However, the exact mechanism by which silencing is maintained across generations is not understood.Here we demonstrate that silencing of piRNA targets involves the production of two distinct classes of small RNAs with different genetic requirements. The first class, secondary siRNAs, are localized close to the direct target site for piRNAs. Nuclear import of the secondary siRNAs by the Argonaute HRDE-1 leads to the production of a distinct class of small RNAs that map throughout the transcript, which we term tertiary siRNAs. Both classes of small RNAs are necessary for full repression of the target gene and can be maintained independently of the initial piRNA trigger. Consistently, we observed a form of paramutation associated with tertiary siRNAs. Once paramutated, a tertiary siRNA generating allele confers dominant silencing in the progeny regardless of its own transmission, suggesting germline-transmitted siRNAs are sufficient for multigenerational silencing. C. elegans strains containing transgenes silenced by piRNAs were crossed to strains with transgenes with similar sequences but without piRNA target sites, to investigate the spreading of silencing between transgenes mediated by small RNAs. Mutant backgrounds were used to investigate the genetic requirements for this process.
Project description:The human pathogenic yeast Cryptococcus neoformans silences transposable elements using endo-siRNAs and an Argonaute, Ago1. Endo-siRNAs production requires the RNA-dependent RNA polymerase, Rdp1, and two partially redundant Dicer enzymes, Dcr1 and Dcr2, but is independent of histone H3 lysine 9 methylation. We describe here an insertional mutagenesis screen for factors required to suppress the mobilization of the C. neoformans HARBINGER family DNA transposon HAR1. Validation experiments uncovered five novel genes (RDE1-5) required for HAR1 suppression and global production of suppressive endo-siRNAs. The RDE genes impact global siRNA levels and transposon mobilization but not global transcript levels, suggesting the endo-siRNAs do not act by impacting target transcript synthesis or turnover. RDE3 encodes a non-Dicer RNase III related to S. cerevisiae Rnt1, RDE4 encodes a predicted terminal nucleotidyltransferase, while RDE5 has no strongly predicted encoded domains. Affinity purification-mass spectrometry studies reveal that Rde3 and Rde5 are physically associated. RDE1 encodes a G-patch protein homologous to the S. cerevisiae Sqs1/Pfa1, a nucleolar protein that directly activates the essential helicase Prp43 during rRNA biogenesis. Rde1 copurifies Rde2, another novel protein obtained in the screen, as well as Ago1, a homolog of Prp43, and numerous predicted nucleolar proteins. We also describe the isolation of conditional alleles of PRP43, which are defective in RNAi. This work reveals unanticipated requirements for a non-Dicer RNase III and presumptive nucleolar factors for endo-siRNA biogenesis and transposon mobilization suppression in C. neoformans.
Project description:piRNAs are required to maintain germline integrity and fertility but their mechanism of action is poorly understood. Here we demonstrate that C. elegans piRNAs silence transcripts in trans through imperfectly complementary sites. We find that target silencing is independent of Piwi endonuclease activity or “slicing”. Instead, we show that piRNAs initiate a localized secondary endogenous small interfering RNA (endo-siRNA) response. Endogenous protein-coding gene, pseudogene and transposon transcripts exhibit Piwi-dependent endo-siRNAs at sites complementary to piRNAs and are derepressed in Piwi mutants. Genomic loci of piRNA biogenesis are depleted of protein-coding genes but not pseudogenes or transposons. Our data suggest that nematode piRNA clusters are evolving to generate piRNAs against active mobile elements. Thus, piRNAs provide heritable, sequence-specific triggers for RNAi in C. elegans. Affymetrix mRNA expression data from wild-type and two independent prg-1;prg-2 double mutant C. elegans strains (mRNA)
Project description:piRNAs are required to maintain germline integrity and fertility but their mechanism of action is poorly understood. Here we demonstrate that C. elegans piRNAs silence transcripts in trans through imperfectly complementary sites. We find that target silencing is independent of Piwi endonuclease activity or “slicing”. Instead, we show that piRNAs initiate a localized secondary endogenous small interfering RNA (endo-siRNA) response. Endogenous protein-coding gene, pseudogene and transposon transcripts exhibit Piwi-dependent endo-siRNAs at sites complementary to piRNAs and are derepressed in Piwi mutants. Genomic loci of piRNA biogenesis are depleted of protein-coding genes but not pseudogenes or transposons. Our data suggest that nematode piRNA clusters are evolving to generate piRNAs against active mobile elements. Thus, piRNAs provide heritable, sequence-specific triggers for RNAi in C. elegans.
Project description:piRNAs are required to maintain germline integrity and fertility but their mechanism of action is poorly understood. Here we demonstrate that C. elegans piRNAs silence transcripts in trans through imperfectly complementary sites. We find that target silencing is independent of Piwi endonuclease activity or “slicing”. Instead, we show that piRNAs initiate a localized secondary endogenous small interfering RNA (endo-siRNA) response. Endogenous protein-coding gene, pseudogene and transposon transcripts exhibit Piwi-dependent endo-siRNAs at sites complementary to piRNAs and are derepressed in Piwi mutants. Genomic loci of piRNA biogenesis are depleted of protein-coding genes but not pseudogenes or transposons. Our data suggest that nematode piRNA clusters are evolving to generate piRNAs against active mobile elements. Thus, piRNAs provide heritable, sequence-specific triggers for RNAi in C. elegans.
Project description:How lifespan and the rate of aging are set is a key problem in biology. Small RNAs are conserved molecules that impact diverse biological processes through the control of gene expression. However, in contrast to miRNAs, the role of endo-siRNAs in aging remains unexplored. Here, by combining deep sequencing and genomic and genetic approaches in C. elegans, we reveal an unprecedented role for endo-siRNA molecules in the maintenance of proteostasis and lifespan extension in germline-less animals. Furthermore, we identify an endo-siRNA-regulated tyrosine phosphatase, which limits the longevity of germline-less animals by restricting the activity of the heat shock transcription factor HSF-1. Altogether, our findings point to endo-siRNAs as a link between germline removal and the HSF-1 proteostasis and longevity-promoting somatic pathway. This establishes a role for endo siRNAs in the aging process and identifies downstream genes and physiological processes that are regulated by the endo siRNAs to affect longevity.
Project description:How lifespan and the rate of aging are set is a key problem in biology. Small RNAs are conserved molecules that impact diverse biological processes through the control of gene expression. However, in contrast to miRNAs, the role of endo-siRNAs in aging remains unexplored. Here, by combining deep sequencing and genomic and genetic approaches in C.CaenorhabditisC. elegans elegans, we reveal an unprecedented role for endo-siRNA molecules in the maintenance of proteostasis and lifespan extension in germline-less animals. Furthermore, we identify an endo-siRNA-regulated tyrosine phosphatase, which limits the longevity of germline-less animals by restricting the activity of the heat shock transcription factor HSF-1. Altogether, our findings point to endo-siRNAs as a link between germline removal and the HSF-1 proteostasis and longevity-promoting somatic pathway. This establishes a role for endo siRNAs in the aging process and identifies downstream genes and physiological processes that are regulated by the endo siRNAs to affect longevity.
Project description:Transposable elements are a serious threat for genome integrity and their control via small RNA mediated silencing pathways is an ancient strategy. The fruit fly Drosophila melanogaster has two silencing mechanisms that repress TEs expression: endogenous siRNAs (esiRNAs or endo-siRNAs) and Piwi-interacting small RNAs (piRNAs). The biogenesis of endo-siRNAs involves Loqs-PD, which acts predominantly during processing of dsRNA by Dcr-2, and R2D2 that primarily helps to direct siRNAs for loading into Ago2. We provide deep sequencing evidence consistent with the idea that R2D2 and Loqs-PD can function in part redundantly. Certain transposons display a preference for either dsRBD-protein for production or loading; this appeared to correlate neither with overall abundance, classification of the transposon or a specific site of genomic origin. The endo-siRNA biogenesis pathway in the germline operates according to the same principles as the existing model for the soma, and its impairment does not significantly affect piRNAs. Expanding the analysis, we confirmed the occurrence of somatic piRNA-like RNAs (pilRNAs) that show a ping-pong signature. We detected expression of the Piwi-family protein mRNAs only barely above background, indicating that the somatic pilRNAs may arise from a small sub-population of somatic cells that express a functional piRNA pathway.