Project description:The goal of this study was to transciprtionally profile the three layers of the human placenta (decidua, fetal membrane and placental villi) from the mid-gestation healthy human placenta.
Project description:The placenta is considered one of the candidate cell sources in cellular therapeutics because of a large number of cells and heterogenous cell population with myogenic potentials. We first analyzed myogenic potential of cells obtained from six parts of the placenta, i.e., umbilical cord, amniotic epithelium, amniotic mesoderm, chorionic plate, villous chorion (chorion frondosum), , and decidua basalis. Implantation of placenta-derived cells into dystrophic muscles of immunodeficient mdx mice restored sarcolemmal expression of human dystrophin. Co-existence of human and murine nuclei in one myotube and presence of human dystrophin in murine myotube suggests that human dystrophin expression is due to cell fusion between host murine myocytes and implanted human cells. In vitro analysis revealed that cells derived from amniotic mesoderm, chorionic plate, ,and villous chorion efficiently transdifferentiate into myotubes. These cells fused to C2C12 murine myoblasts by in vitro co-culturing, and murine myoblasts start to express human dystrophin after fusion. These results demonstrate that placenta-derived cells, especially extraembryonic mesodermal cells, have a myogenic potential and regenerative capacity of skeletal muscle. Determination of cell specification with the gene chip analysis revealed that each placental cell has a distinct expression pattern. Keywords: Determination of cell specification
Project description:Purpose: Parturition is delayed by approximately 12 hours in transgenic mice expressing human corticotropin-releasing hormone (CRH) in placenta. The goal of the study was to identify the pathways in reproductive tissues (uterus and placenta) altered by placental expression of human CRH. Methods: Human BAC RP11-366K18 (CHORI) containing human CRH and cis-regulatory region was inserted into the mouse genome by microinjection and random integration to create the BAC1 line. The CRISPR/Cas9 system was used to delete a CRH regulatory element from the BAC1 line to create the CR1 line, eliminating expression of CRH in placenta. Total expression of uterus and placenta by RNA-seq at embryonic day 18.5 were compared between BAC1, CR1, and nontransgenic mice. Results: Genes known to be associated with luteolysis and initiation of parturition (Cav1, Gja1, Oxtr, Ptgs1, Ptgs2) were not differentially expressed in uterus of this model. Conclusions: CRH-mediated delay of parturition is likely independent of luteolysis.
Project description:There is increasing concern regarding the adverse effects of air pollution on human health, and benzene is a major toxic compound in air pollution. Maternal benzene exposure has been associated with reproductive complications, such as preterm birth, low birth weight, and immunological and neurological complications in the offspring. However, it is poorly understood how benzene induces these complications. Our objective was to establish a full body inhalation mouse model for maternal benzene exposure that mimics clinical phenotypes observed in human populations, and characterize the maternal immune activation and placental response in our model. Here, we report that maternal immune activation triggered by benzene exposure during pregnancy leads to increased resorptions, abnormal placenta development and low birth weight of fetus. More importantly, there is a sexual dimorphic response to benzene exposure in female and male placentas. In the male placenta, the transcriptome changes reveal a more immunologically relevant profile, while females have a metabolically related profile. Furthermore, we discover the sexual dimorphic response could be a consequence of the sexual dimorphism of placenta at baseline, which indicates the significant difference between sexes in terms of the immunological processes in the placenta, both in human and mouse. Therefore, our findings established a benzene exposure mouse model and indicated the sexual dimorphism of placenta, which provides valuable reference for the future pregnancy studies.
Project description:Total RNA was isolated from all the placental tissues using Trizol, and mRNA was isolated using FastTrack Kit. We used a placenta reference as a standard for all these array hybridizations. The placenta reference is a mixture of placenta mRNA with CRG.
Project description:Total RNA was isolated from all the placental tissues using Trizol, and mRNA was isolated using FastTrack Kit. We used a placenta reference as a standard for all these array hybridizations. The placenta reference is a mixture of placenta mRNA with CRG. Set of arrays organized by shared biological context, such as organism, tumors types, processes, etc. Computed