Project description:Our aim is to identify frequent genomic aberrations both in ESCC and esophageal dysplasia, and to discover important copy number-driving genes and microRNAs in ESCC. We carried out array-based comparative genomic hybridization (array CGH) on 59 ESCC resection samples and 16 dysplasia biopsy samples. Expression of genes at 11q13.3 was analyzed by real-time PCR and immunohistochemistry (IHC). Integrated analysis was performed to identify genes or microRNAs with copy number-expression correlations. Two group experiment, esophageal dysplasia vs. esophageal squamous cell carcinoma. Biological replicates: 16 dysplasias vs. 59 carcinomas
Project description:This study was designed to identify genes aberrantly expressed in esophageal squamous cell carcinoma (ESCC) cells. Three esophageal squamous cell carcinoma-derived cell lines and one normal human esophageal squamous cell line were analyzed.
Project description:micro-RNA in cancer-associated fibroblasts in oral squamous cell carcinoma vs. dysplasia-associated fibroblasts from dysplastic oral lesions vs. normal fibroblasts from normal oral mucosa from healthy individual.
Project description:The aim of this study is to generate and validate biomarkers to stratify patients with Barrett’s esophagus in terms of risk for developing cancer. We studied gene expression profiling in 69 frozen specimens, consisting of esophageal squamous epithelium from 19 healthy subjects, 20 specimens from patients with Barrett’s esophagus and 21 cases of esophageal adenocarcinoma, 9 cased of esophageal squamous cell carcinoma by whole genome microarray analysis. Laser capture microdissection technique was applied to procure cells from defined regions of Barrett’s esophagus metaplasia and esophageal adenocarcinoma. Microarray results were validated by quantitative real-time polymerase chain reaction (qRT-PCR) in an independent cohort consisting of 42 cases. Furthermore, immunohistochemistry was performed using antibodies to two selected target molecules on a third independent cohort of 36 specimens, consisting of 36 cases. A total of 1176 genes were associated significantly with esophageal adenocarcinoma. The expression pattern of a 4 gene signature with the highest discriminant score based on linear discriminant analysis (GeneSpring GX10.2), was identified and validated by qRT-PCR in independent cohort. Gene expression profiling of 20 specimens of Barrett's esophagus patients, 21 specimens of adenocarcinoma patients and 19 biopsies from patients with normal esophageal squamous epithelium, 9 specimens of squamous cell carcinoma were studied.
Project description:Our aim is to identify frequent genomic aberrations both in ESCC and esophageal dysplasia, and to discover important copy number-driving genes and microRNAs in ESCC. We carried out array-based comparative genomic hybridization (array CGH) on 59 ESCC resection samples and 16 dysplasia biopsy samples. Expression of genes at 11q13.3 was analyzed by real-time PCR and immunohistochemistry (IHC). Integrated analysis was performed to identify genes or microRNAs with copy number-expression correlations.
Project description:We comprehensively characterized the gene expression alterations occurring during squamous lung cancer development. Fresh frozen human bronchial biopsies (N=122) at successive morphological stages of lung squamous carcinogenesis were obtained by fluorescence bronchoscopy and analyzed using gene expression microarrays. A total of 122 biopsies from 77 individuals, 35 former and 42 current smokers, were included. The 122 biopsies were distributed according to histology and fluorescence status as follows: 13 biopsies with normal histology and normofluorescent (8/5 biopsies from former/current smokers), 14 with normal histology and hypofluorescent (8/6), 15 hyperplasia (7/8), 15 metaplasia (5/10), 13 mild dysplasia (8/5), 13 moderate dysplasia (7/6), 12 severe dysplasia (2/10), 13 carcinoma in situ (5/8) and 14 squamous cell carcinoma (SCC, 5/9). In addition, normal bronchial biopsies from 16 never-smokers were collected and pooled for use as reference RNA.
Project description:To identify differentially expressed genes by anti cancer treatments (microRNAs or siRNAs) in human cancer, several cell lines (pancreatic cancer, esophageal cancer, tongue squamous cell carcinoma, hypopharyngeal squamous cell carcinoma and lung squamous cell carcinoma) were subjected to Agilent whole genome microarrays.
Project description:We microdissected discrete sub-regions of esophageal squamous cell carcinoma (ESCC) and analyzed the transcriptomes throughout three-dimensional (3D) tumor space. Nine cases were used for TP/TC comparison, five cases were used for 3D analysis, one normal case was set as a control.