Project description:A comparative gene expression analysis was performed using cDNA microarray technology in passage-2 normal human nasal epithelial cells to identify the differentially expressed genes between influenza A virus infected and uninfected cells. Two samples were analyzed. RNA was extracted from normal human nasal epithelial cells, which were further divided as H1N1 PI 0 day and H1N1 PI 2 day (influenza A virus infection for 48 hr).
Project description:A comparative gene expression analysis was performed using cDNA microarray technology in passage-2 normal human nasal epithelial cells to identify the differentially expressed genes between influenza A virus infected and uninfected cells.
Project description:Viral respiratory infections significantly affect young children, particularly extremely premature infants, resulting in high hospitalization rates and increased health-care burdens. Despite posing substantial health risks, airway immune responses in early life remain largely unexplored. Nasal epithelial cells, the primary defense against respiratory infections, are vital for understanding nasal immune responses and serve as a promising target for uncovering underlying molecular and cellular mechanisms. Using a trans-well pseudostratified nasal epithelial cell system, we examined age-dependent developmental differences and antiviral responses to influenza A and respiratory syncytial virus through systems biology approaches. Our studies revealed differences in innate-receptor repertoires, distinct developmental pathways, and differentially connected antiviral network circuits between neonatal and adult nasal epithelial cells. Consensus network analysis identified unique and shared cellular networks for influenza A and respiratory syncytial virus, emphasizing highly relevant virus-specific pathways. This research highlights the importance of nasal epithelial cells in innate antiviral immune responses and offers novel insights that should enable a deeper understanding of age-related differences in nasal epithelial cell immunity following respiratory virus infections.
Project description:E2 exposure significantly decreased peak viral titer in hNECs from female donors. We used microarray analyses to identify global gene expression patterns between E2 and vehicle exposed hNECs from female donors Influenza causes an acute infection characterized by virus replication in respiratory epithelial cells. The severity of influenza and other respiratory diseases changes over the life course and during pregnancy in women, suggesting that sex steroid hormones, such as estrogens, may be involved. Using primary, differentiated human nasal epithelial cell (hNEC) cultures from adult male and female donors, we exposed cultures to the endogenous 17β-estradiol (E2) or select estrogen receptor modulators (SERMs), then infected cultures with a seasonal influenza A virus (IAV) to determine whether estrogenic signaling could affect the outcome of IAV infection and whether these effects where sex-dependent. Estradiol, raloxifene, and bisphenol A decreased IAV titers in hNECs from female, but not male, donors. The estrogenic decrease in viral titer was dependent on the genomic estrogen receptor- 2 (ESR2) as neither genomic ESR1 nor non- genomic GPR30 were expressed in hNEC cultures and addition of the genomic ER antagonist ICI 182,780 reversed the antiviral effects of E2. Treatment of hNECs with E2 had no effect on interferon or chemokine secretion, but significantly downregulated cell metabolic processes, including genes that encode for zinc finger proteins, many of which contain estrogen response elements in their promoters. These data provide novel insights into the cellular and molecular mechanisms of how natural and synthetic estrogens impact IAV infection in respiratory epithelial cells derived from humans. Primary human nasal epithelial cells from females were exposed to E2 for 24h prior to infection, then infected with an H3N2 strain of influenza a virus for 2 hours. At 24 and 48h post infection, hNECs were collected in Trizol for RNA extraction and hybridization on Affymetrix Human Gene ST 2.0 microarrays.
Project description:To evaluate the differential impact of IFN-gamma secretion on nasal cavity epithelial cells, we compared the transcriptional profiles of nasal cavity epithelial cells (CD45-, CD3- CD11b-, CD31-, CD326+) from wildtype and IFN-gamma knockout mice at 30 days (d30) post intranasal infection with a live attenuated influenza virus expressing the immunodominant H-2Kd CD8 T cell epitope from Sendai virus nucleoprotein (LAIV-SenNP). Nasal cavity epithelial cells were also analyzed from LAIV-SenNP immunized wildtype and IFN-gamma knockout mice 3 days after intranasal administration of Sendai virus nucleoprotein peptide (d30+3). The results indicate that nasal cavity epithelial cells express genes associated with antigen presentation and antiviral function following antigen-specific T cell activation, and these alterations in transcriptional programming depend on IFN-gamma secretion.
Project description:A. Esteban Hernandez-Vargas & Michael Meyer-Hermann. Innate Immune System Dynamics to Influenza Virus. IFAC Proceedings Volumes 45, 18 (2012).
The understanding of how influenza virus infection activates the immune system is crucial to designing prophylactic and therapeutic strategies against the infection. Nevertheless, the immune response to influenza virus infection is complex and remains largely unknown. In this paper we focus in the innate immune response to influenza virus using a mathematical model, based on interferon-induced resistance to infection of respiratory epithelial cells and the clearance of infected cells by natural killers. Simulation results show the importance of IFN-I to prevent new infections in epithelial cells and to stop the viral explosion during the first two days after infection. Nevertheless, natural killers response might be the most relevant for the first depletion in viral load due to the elimination of infected cells. Based on the reproductive number, the innate immune response is important to control the infection, although it would not be enough to clear completely the virus. The effective coordination between innate and adaptive immune response is essential for the virus eradication.
Project description:Miao2010 - Innate and adaptive immune
responses to primary Influenza A Virus infection
This model is described in the article:
Quantifying the early immune
response and adaptive immune response kinetics in mice infected
with influenza A virus.
Miao H, Hollenbaugh JA, Zand MS,
Holden-Wiltse J, Mosmann TR, Perelson AS, Wu H, Topham DJ.
J. Virol. 2010 Jul; 84(13):
6687-6698
Abstract:
Seasonal and pandemic influenza A virus (IAV) continues to
be a public health threat. However, we lack a detailed and
quantitative understanding of the immune response kinetics to
IAV infection and which biological parameters most strongly
influence infection outcomes. To address these issues, we use
modeling approaches combined with experimental data to
quantitatively investigate the innate and adaptive immune
responses to primary IAV infection. Mathematical models were
developed to describe the dynamic interactions between target
(epithelial) cells, influenza virus, cytotoxic T lymphocytes
(CTLs), and virus-specific IgG and IgM. IAV and immune kinetic
parameters were estimated by fitting models to a large data set
obtained from primary H3N2 IAV infection of 340 mice. Prior to
a detectable virus-specific immune response (before day 5), the
estimated half-life of infected epithelial cells is
approximately 1.2 days, and the half-life of free infectious
IAV is approximately 4 h. During the adaptive immune response
(after day 5), the average half-life of infected epithelial
cells is approximately 0.5 days, and the average half-life of
free infectious virus is approximately 1.8 min. During the
adaptive phase, model fitting confirms that CD8(+) CTLs are
crucial for limiting infected cells, while virus-specific IgM
regulates free IAV levels. This may imply that CD4 T cells and
class-switched IgG antibodies are more relevant for generating
IAV-specific memory and preventing future infection via a more
rapid secondary immune response. Also, simulation studies were
performed to understand the relative contributions of
biological parameters to IAV clearance. This study provides a
basis to better understand and predict influenza virus
immunity.
This model is hosted on
BioModels Database
and identified by:
BIOMD0000000546.
To cite BioModels Database, please use:
BioModels Database:
An enhanced, curated and annotated resource for published
quantitative kinetic models.
To the extent possible under law, all copyright and related or
neighbouring rights to this encoded model have been dedicated to
the public domain worldwide. Please refer to
CC0
Public Domain Dedication for more information.
Project description:Non-human primates are the animals closest to humans for use in influenza A virus challenge studies, in terms of their phylogenetic relatedness, physiology and immune systems. Previous studies have shown that cynomolgus macaques (Macaca fascicularis) are permissive for infection with H1N1pdm influenza virus. These studies have typically used combined challenge routes, with the majority being intra-tracheal delivery, and high doses of virus (> 107 infectious units). This paper describes the outcome of novel challenge routes (inhaled aerosol, intra-nasal instillation) and low to moderate doses (103 to 106 plaque forming units) of H1N1pdm virus in cynomolgus macaques. All 4 challenge groups showed sero-conversion and evidence of virus replication, although the disease was sub-clinical. Intra-nasal challenge led to an infection confined to the nasal cavity. A low dose (103 plaque forming units) did not lead to detectable infectious virus shedding, but a 1000-fold higher dose led to virus shedding in all intra-nasal challenged animals. In contrast, aerosol and intra-tracheal challenge routes led to infections throughout the respiratory tract, although shedding from the nasal cavity was less reproducible between animals compared to the high-dose intra-nasal challenge group. Intra-tracheal and aerosol challenges induced a transient lymphopaenia, similar to that observed in influenza-infected humans, and greater virus-specific cellular immune responses in the blood were observed in these groups in comparison to the intra-nasal challenge groups. Activation of lung macrophages and innate immune response genes were detected at days 5 to 7 post-challenge. The kinetics of infection, both virological and immunological, were broadly in line with human influenza A virus infections. These more authentic infection models should be valuable in the determination of anti-influenza efficacy of novel entities against less severe (and thus more common) influenza infections.
Project description:Few studies have examined the local surface remodeling of primary human nasal epithelial cells (HNECs) during viral infection. Hence, the full range of upregulated adhesion molecules during respiratory viral infections that facilitate bacterial attachment and entry remain unknown. Accordingly, the current study provides a comprehensive view of HNEC responses to influenza virus pH1N1 infection, via global proteome profiling of uninfected (Mock, n = 4) and influenza-infected (Virus-only, n = 4) HNECs with isobaric tags using relative and absolute quantitation (iTRAQ) technique. A total of 3583 proteins were detected, 89 of which were significantly increased (52 proteins) or decreased (37 proteins) in the virus-infected HNECs compared to mock-infected controls (p < 0.05).
Project description:Metabolomics analysis of human tracheobronchial epithelial (HTBE) cells was conducted at multiple time points in response to infection with influenza A/California/04/09 (H1N1) virus or mock infection.