Project description:Rotavirus infection is the single most important cause of severe diarrhea in young children worldwide. We used Affymetrix Human U95Av2 high density oligonucleotide arrays to compare gene expression profiles in peripheral blood mononuclear cells (PBMC) of 10 children with acute rotavirus diarrhea and 8 age-matched healthy children. We also examined patterns of gene expression in 5 convalescent-phase PBMC samples from rotavirus patients. For data analysis, we imported .cel files generated by Affymetrix MAS5.0 into Genetraffic 3.1 software (Iobion) and performed robust multi-chip analysis. We considered a gene in patients differentially expressed if its level of expression was at least 1.5-fold higher or lower than the baseline (arithmetic mean) of the corresponding gene in 8 controls and if its pattern of elevated or repressed expression was observed in at least 7 of the 10 patients. Using these criteria, we identified ~1% up- and ~2% down-regulated genes in acute-phase PBMC of patients. Up-regulated genes included those involved in the differentiation, maturation, activation, and survival of B cells, as well as an array of genes with function in inflammatory and antiviral activities. We observed a pattern of repressed expression of a number of genes involved in the various stages of T-cell development and activation. On the basis of these results, we conclude that rotavirus infection induces robust inflammatory response and B-cell activation but represses T-cell response. Keywords: other
Project description:Rotavirus infection is the single most important cause of severe diarrhea in young children worldwide. We used Affymetrix Human U95Av2 high density oligonucleotide arrays to compare gene expression profiles in peripheral blood mononuclear cells (PBMC) of 10 children with acute rotavirus diarrhea and 8 age-matched healthy children. We also examined patterns of gene expression in 5 convalescent-phase PBMC samples from rotavirus patients. For data analysis, we imported .cel files generated by Affymetrix MAS5.0 into Genetraffic 3.1 software (Iobion) and performed robust multi-chip analysis. We considered a gene in patients differentially expressed if its level of expression was at least 1.5-fold higher or lower than the baseline (arithmetic mean) of the corresponding gene in 8 controls and if its pattern of elevated or repressed expression was observed in at least 7 of the 10 patients. Using these criteria, we identified ~1% up- and ~2% down-regulated genes in acute-phase PBMC of patients. Up-regulated genes included those involved in the differentiation, maturation, activation, and survival of B cells, as well as an array of genes with function in inflammatory and antiviral activities. We observed a pattern of repressed expression of a number of genes involved in the various stages of T-cell development and activation. On the basis of these results, we conclude that rotavirus infection induces robust inflammatory response and B-cell activation but represses T-cell response.
Project description:In a single-cell RNA sequencing experiment, we defined subsets of intestinal epithelial cells in 5-day-old mice and observed decreased transcript levels of sodium-hydrogen exchanger 3 (Nhe3) and Dra in several epithelial cell groups following rotavirus infection. In contrast, transcript levels of sodium-glucose cotransporter 1 (Sglt1), electrogenic sodium bicarbonate cotransporter (Nbce1), solute carrier family 12 member 2 (Nkcc1), and Cftr were unaffected. Furthermore, expression of Nhe3 and Dra was down-regulated in both rotavirus infected intestinal epithelial cells that contained rotavirus transcripts and uninfected bystander cells, suggesting induction of paracrine signaling.
Project description:RNAseq of coding and noncoding RNA isolated from intestinal tuft cells reveals murine rotavirus replication in intestinal tuft cells.