Project description:Critical shortage of donor organs for treating end-stage organ failure highlights the urgent need for generating organs from induced pluripotent stem cells (hiPSCs). Despite many reports describing functional cell differentiation, no studies have succeeded in generating a three-dimensional vascularised organ such as liver. Here, we show the generation of vascularised and functional human liver from hiPSCs by transplantation of liver buds created in vitro (hiPSC-LBs). Specified hepatic cells self-organised into three-dimensional hiPSC-LBs by recapitulating organogenetic interactions between endothelial and mesenchymal cells. Immunostaining and gene expression analyses revealed resemblance between in vitro grown hiPSC-LBs and in vivo liver buds. Human vasculatures in hiPSC-LB transplants became functional by connecting to the host vessels within 48 hours. The formation of functional vasculatures stimulated the maturation of hiPSC-LBs into tissue resembling the adult liver. Highly metabolic hiPSC-derived tissue performed liver-specific functions such as protein production and human-specific drug metabolism without recipient liver replacement. Comparison of liver developmental gene signatures among hiPSC-LB, hFLC-LB, human adult (30 years old) liver tissues (hALT) and mouse liver tissue (mLT) of various developmental stages (E9.5~P8weeks).
Project description:Critical shortage of donor organs for treating end-stage organ failure highlights the urgent need for generating organs from induced pluripotent stem cells (hiPSCs). Despite many reports describing functional cell differentiation, no studies have succeeded in generating a three-dimensional vascularised organ such as liver. Here, we show the generation of vascularised and functional human liver from hiPSCs by transplantation of liver buds created in vitro (hiPSC-LBs). Specified hepatic cells self-organised into three-dimensional hiPSC-LBs by recapitulating organogenetic interactions between endothelial and mesenchymal cells. Immunostaining and gene expression analyses revealed resemblance between in vitro grown hiPSC-LBs and in vivo liver buds. Human vasculatures in hiPSC-LB transplants became functional by connecting to the host vessels within 48 hours. The formation of functional vasculatures stimulated the maturation of hiPSC-LBs into tissue resembling the adult liver. Highly metabolic hiPSC-derived tissue performed liver-specific functions such as protein production and human-specific drug metabolism without recipient liver replacement.
Project description:TransplantLines is designed as a single-center, prospective cohort study and biobank including all different types of solid organ transplant recipients as well as living organ donors. In the TransplantLines gut microbiome study the gut microbiome of solid organ transplant recipients is characterized and linked to clinical phenotypes. This batch contains the cross-sectional data from liver transplant recipients and longitudinal data from renal and liver transplant recipients.
Project description:The purpose of this study is to determine the clinical benefit and characterize the safety profile of tabelecleucel for the treatment of Epstein-Barr virus-associated post-transplant lymphoproliferative disease (EBV+ PTLD) in the setting of (1) solid organ transplant (SOT) after failure of rituximab and rituximab plus chemotherapy or (2) allogeneic hematopoietic cell transplant (HCT) after failure of rituximab.
Project description:This study determined key transcriptional signatures associated with HCV recurrence and eventual development of severe liver disease in infected transplant patient liver biopsies over time following transplant. We identified molecular signatures associated with severe fibrosis and liver injury prior to histologic evidence of disease progression. 111 liver biopsy specimens collected longitudinally from 57 HCV-infected liver transplant patients following organ transplant. Several batches of pooled normal liver RNA samples (Utah normal pool; UNP) are included.