Project description:High levels of Hes1 expression are frequently found in BCR-ABL-positive chronic myelogenous leukemia in blast crisis (CML-BC). In mouse bone marrow transplantation (BMT) models, co-expression of BCR-ABL and Hes1 induces CML-BC–like disease; however the underlying mechanism remained elusive. Here, based on gene expression analysis, we show that MMP-9 is upregulated by Hes1 in common myeloid progenitors (CMPs). Analysis of promoter activity demonstrated that Hes1 upregulated MMP-9 by activating NF-kB. Analysis of 20 samples from CML-BC patients showed that MMP-9 was highly expressed in three, with two exhibiting high levels of Hes1 expression. Interestingly, MMP-9 deficiency impaired the cobblestone area-forming ability of CMPs expressing BCR-ABL and Hes1 that were in conjunction with a stromal cell layer. In addition, these CMPs secreted MMP-9, promoting the release of soluble Kit-ligand (sKitL) from stromal cells, thereby enhancing proliferation of the leukemic cells. In accordance, mice transplanted with CMPs expressing BCR-ABL and Hes1 exhibited high levels of sKitL as well as MMP-9 in the serum. Importantly, MMP-9 deficiency impaired the development of CML-BC–like disease induced by BCR-ABL and Hes1 in mouse BMT models. The present results suggest that Hes1 promotes the development of CML-BC, partly through MMP-9 upregulation in leukemic cells. Common myeloid progenitors (CMPs; Lineage negative, c-Kit positive, Sca-1 negative, Fc-gamma-receptor low, CD34 positive fraction) were sorted with a FACSAria cell sorter (Becton Dickinson). Retroviruses were generated by transfecting Plat-E packaging cells with retrovirus vector pMYs-Hes1-IRES-GFP or empty vector (pMYs-IRES-GFP) using FuGENE 6 (Roche Diagnostics). Infection of retrovirus harboring Hes1 (pMYs-Hes1-IRES-GFP) or empty vector (pMYs-IRES-GFP) into progenitors was performed using RetroNectin (Takara Bio). Hes1-transfected CMPs and Mock-transduced CMPs were isolated 36 hours after infection with a FACSAria cell sorter. One sample of Hes1-transfected CMPs and one sample of mock-transduced CMPs were analyzed with GeneChip Mouse Genome 430 2.0 Array.
Project description:Genes specific to Sox9+ pancreatic progenitors were identified by comparing the gene expression in embryonic and adult Sox9+ cells. We used microarray analysis to detail the global changes in gene expression as Sox9 positive embryonic pancreatic progenitors differentiatiate into adult ductal cells or the endocrine lineage. GFP positive cells from Sox9-EGFP mouse pancreas were isolated by FACS at different stages of development (e10.5, e15.5, and p23) for RNA extraction and hybridization to Affymetrix microarrays. To obtain populations highly enriched in Sox9 expression, we collected only GFP Hi populations for analysis. To identify gene expression changes specific to the differentiation of progenitors to ductal cells or endocrine cells, we also isolated and analyzed the gene expression profile of GFP negative cells isolated at p23, as well as GFP positive cells isolated from Ngn3-EGFP mouse pancreas at e15.5. These two populations allow the identification of genes whose expression is associated with the newly differentiated endocrine progeny in the embryo (Ngn3-GFP positive) and adult acinar and endocrine cells at p23.
Project description:To identify genome-wide, direct targets of HES1 in human pancreas progenitors, we performed Chromatin immunoprecipitation followed by deep sequencing (ChIP-seq) of endogenous HES1 in the HUES4 PDX1GFP/+ reporter cell line on Day 13 of differentiation from both unsorted bulk populations and FACS-sorted GFP+ cells.
Project description:RNA-seq of FACS Sorted E10.5 Pdx1-GFP+ of genotypes wildtype and Hes1-/-. Summary statement The developmental mechanisms that cause ectopic pancreas are poorly understood. We show that aberrant dorsal pancreas morphogenesis in Hes1 mutants leads to ectopic pancreas depending on the pro-endocrine gene Neurog3. Abstract Mutations in Hes1, a target gene of the Notch signalling pathway, lead to ectopic pancreas by a poorly described mechanism. Here we use genetic inactivation of Hes1 combined with lineage tracing in mouse embryos to reveal an endodermal requirement for Hes1 and that most ectopic pancreas tissue is derived from the E8.5 dorsal pancreas primordium. RNA-seq data from sorted E10.5 Pdx1-GFP+ cells from Hes1+/+ and Hes1−/− suggested that upregulation of endocrine lineage genes in Hes1−/− embryos was the major defect in the endoderm and accordingly early pancreas morphogenesis was normalised and the ectopic pancreas phenotype suppressed in Hes1−/−Neurog3−/− embryos. Analysis of other Notch pathway mutants uncovered a total depletion of progenitors in Mib1 deficient dorsal anlage, which was replaced by an anterior Gcg+ extension. Together, our results demonstrate that aberrant morphogenesis is the cause of ectopic pancreas and that a part of the endocrine differentiation program is mechanistically involved in the dysgenesis. Our results suggest that the ratio of endocrine lineage to progenitor cells is important for morphogenesis and that a strong endocrinogenic phenotype without complete progenitor depletion as seen in Hes1 mutants provokes an extreme dysgenesis that causes ectopic pancreas.
Project description:Understanding processes how the early stage kidney precursor gives rise to metanephric mesenchyme, which is a committed progenitor cells of adult kidney is important for the regeneration of kidney in vitro. The combination of fluorescent activated cell sorting (FACS) plus microarray analysis offers a powerful, efficient and effective method for the creation of global gene expression profiles of the developing kidney precursors. Those gene expression data provides insights into not only the stage specific marker genes but also the signals working in each population, which should be informative for the directed differentiation of pluripotent stem cells in vitro. Osr1-GFP knock-in mice were used to isolate kidney precursor cells from embryos at E8.5, E9.5 and E11.5. At E9.5 and E11.5 embryos, to identify the differences between nephron progenitors and surrounding mesenchyme, nephron progenitor populations were further enriched by gating Osr1-GFP positive Integrin alpha8 positive Pdgfr alpha negative population and compared with Osr1-GFP positive cells other than that gate. RNA was isolated from cells and the gene expression profiles were determined by microarrays.