Project description:Experiment was designed to study the effect of Deformed wing virus (DWV) and the mite Varroa destructor on global gene expression using microarray transcriptional profiling in developing worker honeybee (Apis mellifera). Newly hatched bee larvae (day 3 of bee development) were transferred from a Varroa-free colony with low DWV levels to a Varroa-infested colony with high levels of DWV in bees and Varroa mites. All transferred larvae were receiving the DWV strains present in this Varroa-infested colony with the food delivered by the nurse bees until their capping (day 8). About half of these larvae were capped with Varroa mite and were subjected to the mite piercing and feeding on their haemolymph during pupal development until sampling at purple eye stage (day 14). Exposure to the mite piercing and feeding resulted in about 1000-fold increase of the DWV levels in the majority of the mite-exposed pupae compared to the control pupae and the pupae not exposed to Varroa mites.
Project description:Experiment was designed (i) to analyse the strain composition of Deformed wing virus (DWV) populations in covertly and overtly infected honeybees (Apis mellifera) from Varroa-free and Varroa-infested colonies, and (ii) to determine abundance of the DWV strains following direct injection of the DWV preparations from covertly and overtly infected bees to the bee pupae haemolymph in the absence of Varroa destructor mites. Experiment included isolation of DWV preparations from the following bees: covertly-infected bees from Varroa-free colony, covertly infected bees exposed orally to the Varroa-selected DWV strains, and the overtly infected Varroa-exposed bees. Honeybee pupae were experimentally injected with those DWV preparations and sampled 4 days post injection following development of overt DWV infection. A series of the DWV cDNA fragment covering complete DWV genomic RNA sequences were amplified by RT-PCR using RNA extracted from virus preparations and the injected pupae. The cDNA preparations were sequenced using next generation(Illumina HighSeq 2000) paired-end sequencing to obtain data on the DWV strain composition.
Project description:Experiment was designed to study the effect of Deformed wing virus (DWV) and the mite Varroa destructor on on siRNA and miRNA composition using high-throughput sequencing of small RNA in developing worker honeybee (Apis mellifera). Newly hatched bee larvae (day 3 of bee development) were transferred from a Varroa-free colony with low DWV levels to a Varroa-infested colony with high levels of DWV in bees and Varroa mites. All transferred larvae were receiving the DWV strains present in this Varroa-infested colony with the food delivered by the nurse bees until their capping (day 8). About half of these larvae were capped with Varroa mite and were subjected to the mite piercing and feeding on their haemolymph during pupal development until sampling at purple eye stage (day 14). Exposure to the mite piercing and feeding resulted in about 1000-fold increase of the DWV levels in the majority of the mite-exposed pupae compared to the control pupae and the pupae not exposed to Varroa mites.
Project description:Apis mellifera (honeybee) infected with Deformed wing virus, Varroa destructor virus-1 and their recombinants Transcriptome or Gene expression
Project description:We studied the molecular mechanisms underlying the impact of pollen nutrients on honey bee (Apis mellifera) health and how those nutrients improve resistance to parasites. Using digital gene expression, we determined the changes in gene expression induced by pollen intake in worker bees parasitized or not by the mites Varroa destructor, known for suppressing immunity and decreasing lifespan of bees.
Project description:Effects of Deformed wing virus infection and the mite Varroa destructor on siRNA and miRNA composition in the honeybee (Apis mellifera)
Project description:We studied the molecular mechanisms underlying the impact of pollen nutrients on honey bee (Apis mellifera) health and how those nutrients improve resistance to parasites. Using digital gene expression, we determined the changes in gene expression induced by pollen intake in worker bees parasitized or not by the mites Varroa destructor, known for suppressing immunity and decreasing lifespan of bees. bees with or without verroa, and fed or not fed pollen
Project description:To study the underlying molecular mechanisms during the Varroa destructor life cycle, we carried out transcriptomic profiling of seven stages: young mites (collected from P8 to P9 brood cells), phoretic mites (collected on adult bees), arresting mites (collected in unsealed L5 brood cells), pre-laying mites (collected from sealed brood cells containing moving larva), laying mites (collected from sealed brood cells containing pre-pupae), post-laying mites (collected from capped brood cells containing purple-eye and white-body pupae P5), emerging mites (collected from P8 to P9 brood cells). In addition, we sampled non-reproducing mites (collected from P5 brood cells, but without offspring), males (collected from P8 to P9 brood cells), and phoretic mites artificially reared in cages with adult bees. This study was performed using Apis mellifera L. honey bee colonies naturally infested by Varroa destructor mites. Adult mites were collected from 4 unrelated colonies.
Project description:Apis mellifera syriaca is the native honeybee subspecies of Jordan and much of the Middle East. It expresses behavioral adaptations to a regional climate with very high temperatures, nectar dearth in summer, attacks of the Oriental wasp Vespa orientalis and in most cases it is resistant to varroa mites. The Thorax control sample of A. m. syriaca in this experiment was originally collected and stored since 2001 from Wadi Ben Hammad a remote valley in the southern region of Jordan. Using morphometric and Mitochondrial DNA markers it was proved that bees from this area had show higher similarity than other samples collected from the Middle East as represented by reference samples collected in 1952 by Brother Adam. The samples L1-L5 are collected from the National Center for Agricultural Research and Extension breading apiary which was originally established for the conservation of Apis mellifera syriaca. Goal was to use the genetic information in the breeding for varroa resistant bees and to determine the successfulness of this conservation program. Project funded by USAID-MERC grant number: TA-MOU-09-M29-075.
Project description:Varroa destructor is one of the most prevalent and economically damaging honey bee pests worldwide, weakening colonies by simultaneously parasitizing and transmitting damaging viruses. Despite these impacts on honey bee health, surprisingly little is known about its fundamental molecular biology. Here we present a high-resolution V. destructor protein atlas crossing all major developmental stages (egg, protonymph, deutonymph and adult) for both male and female mites as a web-based interactive tool. In a proteogenomic effort, we identified 1,464 unique peptides corresponding to 419 proteins which were previously unannotated and we included these in all subsequent analyses. In order to use mass spectrometry-based peptide sequencing to augment the genome annotation of non-model species, we analyzed their amino acid and nucleotide composition as well as orthology to other species to suggest reasons why they may have been missed initially. Using label-free quantitative proteomics, we found that 1,433 proteins were differentially regulated across developmental stages, including proteins belonging to deformed wing virus and V. destructor virus. One other virus – the bee macula-like virus – was also detected, along with the protein generated by its short 3’ overlapping reading frame. In addition, we found that 101 proteins are sexually regulated and functional enrichment analysis suggests how they may contribute to sex-specific phenotypes and behaviour. Overall, this work provides a first of its kind interrogation of the patterns of gene expression that govern the Varroa life cycle and the tools we have developed will support further research on this threatening honey bee pest.