Project description:Puccinia graminis f.sp. tritici (Pgt), the causal agent of stem rust disease in wheat, is one of the most destructive pathogens and can cause severe yield losses. Here, we utilize Hi-C sequencing technology to scaffold and phase the haplotypes for the genome assembly of a US Pgt isolate 99KS76A-1.
Project description:Puccinia graminis f. sp. tritici is the cause of wheat stem rust. A microarray was designed from genes predicted from the P. graminis f. sp. tritici genome assembly, and gene expression measured for four conditions which include wheat or barley infecting growth stages initiated by urediniospores. mRNA was prepared from fresh urediniospores, uredinospores germinated for 24 hr, wheat seedlings infected with urediniospores for 8 days, and barley seedlings infected with urediniospores for 8 days. The asexual uredinial infection cycle on wheat produces additional urediniospores, which can start new cycles of wheat infection and are readily spread by aerial transport. This expression data is further described in Duplessis et al, Obligate Biotrophy Features Unraveled by the Genomic Analysis of the Rust Fungi, Melampsora larici-populina and Puccinia graminis f. sp. tritici
Project description:Paenibacillus polymyxa is a root-associated plant growth-promoting rhizobacterium. It was reported that many strains of P. polymyxa naturally exhibited the phenotypic variation. In the phase variation, the characteristics of the wild-type ‘B’ and the variant ‘F’ are very different in sporulation formation, motility, antibiotic ability and so on. For better understanding of the actual physiological changes, we performed RNA-seq analyses of P. polymyxa E681 to compare genome wide patterns of gene expression. As a result, we obtained 1,062 differentially expressed genes related to flagellar assembly and transport systems.
Project description:Puccinia graminis f. sp. tritici is the cause of wheat stem rust. A microarray was designed from genes predicted from the P. graminis f. sp. tritici genome assembly, and gene expression measured for four conditions which include wheat or barley infecting growth stages initiated by urediniospores. mRNA was prepared from fresh urediniospores, uredinospores germinated for 24 hr, wheat seedlings infected with urediniospores for 8 days, and barley seedlings infected with urediniospores for 8 days. The asexual uredinial infection cycle on wheat produces additional urediniospores, which can start new cycles of wheat infection and are readily spread by aerial transport. This expression data is further described in Duplessis et al, Obligate Biotrophy Features Unraveled by the Genomic Analysis of the Rust Fungi, Melampsora larici-populina and Puccinia graminis f. sp. tritici A total of 12 samples were analyzed, including three biological replicates of the four conditions.
Project description:Transcriptional profiling of the bacteria Paenibacillus vortex comparing control untreated cells with kanamycin treated cells after 18 hours of exposure. Goal was to determine the effect of the antibiotic kanamycin in concentration which affect the colony morphology on global bacteria gene expression.
Project description:Transcriptional profiling of the bacteria Paenibacillus vortex comparing control untreated cells with kanamycin treated cells after 18 hours of exposure. Goal was to determine the effect of the antibiotic kanamycin in concentration which affect the colony morphology on global bacteria gene expression. Two-condition experiment, control cells vs. kanamycin treated cells. Biological replicates: 2 control replicates, 2 treated replicates. Pooling of 5 technical replicates for each biological replicate.