Project description:We report the transcriptome analysis of epidermal CD8 tissue resident memory T (TRM) cells from healthy human skin. Specifically, epidermal CD8+CD103+CD49a+ and CD8+CD103+CD49- TRM cells from healthy human skin were sorted by FACS. Differential gene expression analysis revealed functional dichotomy of epidermal CD8+CD103+CD49a+ and CD8+CD103+CD49- TRM cells.
Project description:Tissue resident memory T cells (TRM) provide superior protection against infection localised to extra-lymphoid compartments in the body. Here we show that CD103+CD8+ TRM cells develop in skin from killer cell lectin-like receptor (KLR)G1-negative precursors that selectively infiltrate the epithelial layer. In the skin, a combination of chemokine-guided epithelial entry, local interleukin (IL)-15 and transforming growth factor (TGF)-β signalling is required for formation and survival of these long-lived memory cells. Importantly, TRM differentiation results in the gradual acquisition of a unique transcriptional profile that differs from that expressed by memory cells in the circulation and other types of skin-resident intra-epithelial T cells, such as the dendritic epidermal T cells (DETC). We provide a comprehensive molecular and developmental framework for the local differentiation of a distinct type of peripheral memory T cell that contributes to an important first-line of immune defence in barrier tissues such as skin and mucosa. 24 samples were analyzed: 3 replicates of memory gB-T CD8+. CD103+ T cells isolated from the skin of C57/BL6 mice on day 30 p.i. with HSV KOS. 3 replicates of memory P14 CD8+ T cells isolated from gut of mice on day 60 p.i. with LCMV Armstrong. 3 replicates of memory gB-T CD8+ T cells from the lung of mice on day 30 p.i. with influenza WSN. 3 replicates of memory CD62L high CD8+ T cells from the spleen of mice on day 30 p.i. with HSV KOS. 3 replicates of memory CD62L low CD8+ T cells from the spleen of mice of day 30 p.i. with HSV KOS. 3 replicates of γδ-DETC isolated from the skin of C57/BL6 mice on day 30 p.i. with HSV KOS. 3 replicates of αβ-DETC from naive TCRδ-/- mice; and 3 replicates of naive gB-T CD8+ T cells from the spleen of naive gB-T transgenic mice.
Project description:Human skin contains various populations of memory T cells in permanent residence and in transit. The most well characterized subset of resident memory T cell is the CD8+ CD103+ T cell. In order to investigate the remaining subsets, we isolated skin-tropic helper T cells, T regulatory cells, and CD8+ CD103- T cells from skin and from blood by fluorescence activated cell sorting. We extracted RNA and performed a microarray analysis to compare the transcriptional profile of these groups. We found that despite expressing the same marker for skin tropism, the T cells of skin origin were significantly different from those from blood.
Project description:A specialized population of memory CD8+ T-cells resides in the epithelium of the respiratory tract to maintain protection against recurring infections. These cells express CD69 and the integrin αβ7 (CD103) and correspond to tissue resident memory T-cells (TRM) also described in intestine, liver and brain. A less well characterized population of CD103- CD8+ T-cells also resides in lungs and expresses markers characteristic of effector memory T-cells (TEM). We determined the transcriptional profiles of these memory CD8+ T-cell subsets retrieved from human lung resection samples and compared these with corresponding T-cell populations from peripheral blood of the same individuals. Our results demonstrate that each of the populations exhibits a distinct transcriptional identity. We found that the lung environment has a major impact on gene expression profiles. Thus, transcriptomes from CD103+ and CD103- subsets from lungs are much more resemblant to one another than to those from CD103+ or CD103- memory CD8+ T-cells from blood. TRM express specific sets of chemokine receptors, in accordance with their unique migratory properties. Furthermore, these cells constitutively express cytokine and cytotoxic genes for immediate effector function and chemokines to attract auxiliary immune cells. At the same time, multiple genes encoding inhibitory regulators are also expressed. This suggests that rapid ability to unleash effector functions is counterbalanced by programmed restraint, a combination that may be critical in the exposed but delicate tissue of the lung. Comprehensive sets of transcription factors were identified that characterize the memory CD8+ populations in the lungs. Prominent among these were components of the Notch pathway. Using mice genetically lacking expression of the NOTCH1 and NOTCH2 receptors in T-cells, we demonstrated that Notch controls both the number of lung TRM as well as the function of lung TEM. Our data illustrate the adaptation of lung resident T-cells to the requirements of the respiratory epithelial environment. Defining the molecular imprinting of these cells is important for rational vaccine design and may help to improve the properties of T-cells for adoptive cellular therapy. Material was collected from a total of 6 subjects. Three patients underwent a lobectomy for a peripheral primary lung tumor and three received lung transplantation because of end-stage pulmonary disease (COPD). Lung mononuclear cells where isolated after digestion of the partial or complete human lung resection material. Paired peripheral blood mononuclear cells were also isolated. CD8+CD16-CD56- T-cells were sorted for expression of CD103 (ITGAE). Lung and blood derived CD103+ and CD103- T-cell fractions were directly lysed after FACS sorting or stimulated overnight with antiCD3/28 beads. Due to the low frequency of resting (non-stimulated) CD103+ T-cells in peripheral blood this subset was obtained from five non-related buffy coat donors. RNA was isolated from 36 sorted cell samples and hybridized on Illumina HumanHT-12 V4.0 microarrays. Eight microarray samples (including two samples from the buffy coat donors) were excluded after hybridization since their average signal was too low.
Project description:Initially identified as a functional marker for resident-memory (Trm) CD8+ T cells, CD103 (encoded by ITGAE gene) has broad roles in immunity and diseases. Elucidating the function and regulation of CD103 is thus of importance. This study revealed that the CD103 expression by CD8 T cells under steady state contributes to the clearance of acute viral infection. More importantly, it discovered TGF-SKI-Smad4 a critical signaling axis in restricting CD103 expression in CD8+ T cells for their function. Mechanistically, by ChIP-Seq and ChIP analysis, SKI associated with Smad4 was found to directly and epigenetically suppress CD103 transcription. This study therefore reveals a novel TGF-SKI-Smad4 pathway to specifically enable CD103 expression in CD8+ T cells for protective immunity.
Project description:Current cancer immunotherapies promote recovery of CD103+ tissue-resident memory T cells (Trm) population of the tumor-infiltrating T lymphocytes (TILs). However, not all treated patients exhibit improved anti-tumor immunity and survival, likely due to the immunophenotypical diversity among the CD103+ Trm TILs. Utilising multifaceted proteomics approaches and patients’ clinical analyses, we discovered an unusual subset of CD8+ Trm TILs expressing non-canonical integrin β3 early during T cells activation. The integrin β3 surprisingly heterodimerises with CD103 on T cells, leading to unconventional granulysin-mediated cytotoxicity, elevated alternative bioenergy usage and efficient T cell migration, with minimal overall exhaustion. Importantly, early-stage non-small cell lung carcinoma (NSCLC) patients with enriched presence of integrin β3+CD103+ Trm TILs exhibited better clinical prognosis, with improved T cell immunophenotype, hence confirming the beneficial role of this unusual subset of Trm TILs. These unconventional anti-tumor T cell features provide new avenues and future opportunities for designing better translational immunotherapy strategies.
Project description:Tissue resident memory T cells (TRM) provide superior protection against infection localised to extra-lymphoid compartments in the body. Here we show that CD103+CD8+ TRM cells develop in skin from killer cell lectin-like receptor (KLR)G1-negative precursors that selectively infiltrate the epithelial layer. In the skin, a combination of chemokine-guided epithelial entry, local interleukin (IL)-15 and transforming growth factor (TGF)-β signalling is required for formation and survival of these long-lived memory cells. Importantly, TRM differentiation results in the gradual acquisition of a unique transcriptional profile that differs from that expressed by memory cells in the circulation and other types of skin-resident intra-epithelial T cells, such as the dendritic epidermal T cells (DETC). We provide a comprehensive molecular and developmental framework for the local differentiation of a distinct type of peripheral memory T cell that contributes to an important first-line of immune defence in barrier tissues such as skin and mucosa.