Project description:We identified the extracellular vesicles (EVs)secreted by the nematode Nippostrongylus brasiliensis. EV proteins were analysed using a 5600+ mass spectrometer (ABSCIEX).
Project description:MS based secretome analyses of Strongyloides venezuelensis, a gastrointestinal parasite of rats that is widely used as a laboratory model and is known to produce both soluble and insoluble (adhesive) secretions during its parasitic stages.
Project description:Genomic assembly of nematode Nippostrongylus brasiliensis, as part of the 50 Helminth Genomes Initiative sequencing of the parasitic worms that have the greatest impact on human, agricultural and veterinary disease and cause significant global health issues particularly in the developing world, or those used as model organisms.
Project description:Infections with helminth parasites are endemic in the developing world and are a target for intervention with new therapies. Macrophage migration inhibitory factor (MIF) is a cytokine with pleiotropic effects in inflammation and immune responses. We investigated the role of MIF in a naturally cleared model of helminth infection in rodents, Nippostrongylus brasiliensis. At day 7 postinfection, MIF-deficient (MIF-/-) mice had reduced parasite burden and mounted an enhanced type 2 immune response (Th2), including increased Gata3 expression and interleukin-13 (IL-13) production in the mesenteric lymph nodes (MLNs). Bone marrow reconstitution demonstrated that MIF produced from hematopoietic cells was crucial and Rag1-/- reconstitution provided direct evidence that MIF-/- CD4+ T cells were responsible for the augmented parasite clearance. MIF-/- CD4+ T cells produced less IL-6 postinfection, which correlated with enhanced Th2 responses. MIF-/- CD4+ T cells exhibited lower nuclear factor-?B activation, potentially explaining the reduction in IL-6. Finally, we demonstrated enhanced clearance of the parasite and Th2 response in wild-type mice treated with the MIF tautomerase inhibitor, sulforaphane, a compound found naturally found in cruciferous vegetables. These results are the first to describe the importance of the tautomerase enzyme activity in MIF function in N. brasiliensis infection.
Project description:Animal-parasitic nematodes have thus far been largely refractory to genetic manipulation, and methods employed to effect RNA interference (RNAi) have been ineffective or inconsistent in most cases. We describe here a new approach for genetic manipulation of Nippostrongylus brasiliensis, a widely used laboratory model of gastrointestinal nematode infection. N. brasiliensis was successfully transduced with Vesicular Stomatitis Virus glycoprotein G (VSV-G)-pseudotyped lentivirus. The virus was taken up via the nematode intestine, RNA reverse transcribed into proviral DNA, and transgene transcripts produced stably in infective larvae, which resulted in expression of the reporter protein mCherry. Improved transgene expression was achieved by incorporating the C. elegans hlh11 promoter and the tbb2 3´-UTR into viral constructs. MicroRNA-adapted short hairpin RNAs delivered in this manner were processed correctly and resulted in partial knockdown of β-tubulin isotype-1 (tbb-iso-1) and secreted acetylcholinesterase B (ache-B). The system was further refined by lentiviral delivery of double stranded RNAs, which acted as a trigger for RNAi following processing and generation of 22G-RNAs. Virus-encoded sequences were detectable in F1 eggs and third stage larvae, demonstrating that proviral DNA entered the germline and was heritable. Lentiviral transduction thus provides a new means for genetic manipulation of parasitic nematodes, including gene silencing and expression of exogenous genes.