Project description:TCTP has been implicated in a plethora of important cellular processes related to cell growth, cell cycle progression, malignant transformation and inhibition of apoptosis. In addition to these intracellular functions, TCTP has extracellular functions and plays an important role in immune cells. TCTP expression was previously shown to be deregulated in prostate cancer, but its function in prostate cancer cells is largely unknown. Here we show that TCTP expression is regulated by androgens in LNCaP prostate cancer cells in vitro as well as human prostate cancer xenografts in vivo. Knockdown of TCTP reduced colony formation and increased apoptosis in LNCaP cells, implicating it as an important factor for prostate cancer cell growth. Global gene expression profiling in TCTP knockdown LNCaP cells showed that several interferon regulated genes are regulated by TCTP, suggesting that it may have a role in regulating immune function in prostate cancer. In addition, recombinant TCTP treatment increased colony formation in LNCaP cells suggesting that secreted TCTP may function as a proliferative factor in prostate cancer. These results suggest that TCTP may have a role in prostate cancer development.
Project description:TCTP has been implicated in a plethora of important cellular processes related to cell growth, cell cycle progression, malignant transformation and inhibition of apoptosis. In addition to these intracellular functions, TCTP has extracellular functions and plays an important role in immune cells. TCTP expression was previously shown to be deregulated in prostate cancer, but its function in prostate cancer cells is largely unknown. Here we show that TCTP expression is regulated by androgens in LNCaP prostate cancer cells in vitro as well as human prostate cancer xenografts in vivo. Knockdown of TCTP reduced colony formation and increased apoptosis in LNCaP cells, implicating it as an important factor for prostate cancer cell growth. Global gene expression profiling in TCTP knockdown LNCaP cells showed that several interferon regulated genes are regulated by TCTP, suggesting that it may have a role in regulating immune function in prostate cancer. In addition, recombinant TCTP treatment increased colony formation in LNCaP cells suggesting that secreted TCTP may function as a proliferative factor in prostate cancer. These results suggest that TCTP may have a role in prostate cancer development. A total of 6 samples were analyzed. These consisted of three biological replicates for each treatment. The samples transfected with siRNA against Luciferase (siLuc) served as controls.
Project description:Prostate cancer is the most common cancer in men and AR downstream signalings promote prostate cancer cell proliferation. We identified androgen-regulated long non-coding RNA, CTBP1-AS, located in the antisese region of CTBP1 gene. CTBP1-AS activate AR signaling by epigenetically repress AR-associated cofactors such as CTBP1 by interactign with RNA-binding protein PSF and recruiting HDAC complex to the target promoters. In order investigated the PSF target genes, we performed ChIP-seq analysis of PSF binding sites in prostate cancer cell line, LNCaP cells. We identified androgen dependent PSF binding regions in prostate cancer cell genome. We observed PSF bindings around the promoters of androgen repressed genes such as CTBP1, p53 and SMAD3. ChIP-sequence analysis of PSF binding sites in prostate cancer cells
Project description:Prostate cancer is the most common cancer in men and AR downstream signalings promote prostate cancer cell proliferation. We identified androgen-regulated genes, CTBP2, FOXP1 and RUNX1. These factors interact with AR ligand dependently. In order to investigate androgen-regulated gene functions in prostate cancer cells, we performed gene expression in AR-positive prostate cancer cell lines after siRNA treatment. We also treated cells with vehicle or androgen to analyzed the effects of these genes on AR function.
Project description:Prostate cancer is the most common cancer in men and AR downstream signalings promote prostate cancer cell proliferation. We identified androgen-regulated genes, CTBP2, FOXP1 and RUNX1. These factors interact with AR ligand dependently. In order to investigate androgen-regulated gene functions in prostate cancer cells, we performed gene expression in AR-positive prostate cancer cell lines after siRNA treatment. We also treated cells with vehicle or androgen to analyzed the effects of these genes on AR function. Observation of androgen dependent gene expression changes after treatment with siRNAs targeting FOXP1, CTBP2 and FOXA1 with microarray.