Project description:The transition of the endothelium to a pro-inflammatory state is key to progression of chronic inflammatory diseases including rheumatoid arthritis, chronic bowel disease and atherosclerosis. In atherosclerosis it is hypothesized that low density lipoproteins (LDL) that become trapped in the intima of the blood vessels are oxidized to minimally modified LDL (mmLDL) and that these serve as an important contributing factors to endothelial dysfunction. Oxidized 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphatidylcholine (OX-PAPC), a model of the active phospholipid components of mmLDL affects the expression of hundreds of genes involved in inflammatory and other biological processes in human aortic endothelial cells (HAECs). We hypothesized that microRNAs (miRNAs) partially regulate this response. Using next generation sequencing, we identified miR-21-3p and miR-27a-5p to be induced 4-fold and 3-fold, respectively in response to OX-PAPC treatment compared to control treatment in HAECs. To identify the targets, we performed whole genome transcript profiling following transient over-expression of these two miRNAs followed by. In total, 1254 genes were down-regulated with 925 of them overlapping between the two miRNAs. Functional enrichment analysis using Gene Ontology predicted that the two miRNAs were involved in the regulation of NF-κB signaling. We characterized the Toll/interleukin-1 receptor (TIR) domain-containing adaptor protein TICAM2 as a direct target of miR-21-3p and miR-27a-5p. Furthermore, we showed that over-expression of miR-21-3p and miR-27a-5p lead to decreased p65 translocation to the nucleus and decreased the expression of known NF-κB downstream target genes confirming both miRNAs’ role in negatively regulating NF-κB signaling in endothelial cells. mRNA expression profiling of human aortic endothelial cells from two separate donors that were transfected with 1 nM microRNA mimics and negative control. The miRIDIAN mimics used were miR-21-3p (Catalog Number:C-301023-01-0005), miR-27a-5p (Catalog No: C-301028-01-0005), negative control (Catalog No: CN-001000-01-05)
Project description:The transition of the endothelium to a pro-inflammatory state is key to progression of chronic inflammatory diseases including rheumatoid arthritis, chronic bowel disease and atherosclerosis. In atherosclerosis it is hypothesized that low density lipoproteins (LDL) that become trapped in the intima of the blood vessels are oxidized to minimally modified LDL (mmLDL) and that these serve as an important contributing factors to endothelial dysfunction. Oxidized 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphatidylcholine (OX-PAPC), a model of the active phospholipid components of mmLDL affects the expression of hundreds of genes involved in inflammatory and other biological processes in human aortic endothelial cells (HAECs). We hypothesized that microRNAs (miRNAs) partially regulate this response. Using next generation sequencing, we identified miR-21-3p and miR-27a-5p to be induced 4-fold and 3-fold, respectively in response to OX-PAPC treatment compared to control treatment in HAECs. To identify the targets, we performed whole genome transcript profiling following transient over-expression of these two miRNAs followed by. In total, 1254 genes were down-regulated with 925 of them overlapping between the two miRNAs. Functional enrichment analysis using Gene Ontology predicted that the two miRNAs were involved in the regulation of NF-κB signaling. We characterized the Toll/interleukin-1 receptor (TIR) domain-containing adaptor protein TICAM2 as a direct target of miR-21-3p and miR-27a-5p. Furthermore, we showed that over-expression of miR-21-3p and miR-27a-5p lead to decreased p65 translocation to the nucleus and decreased the expression of known NF-κB downstream target genes confirming both miRNAs’ role in negatively regulating NF-κB signaling in endothelial cells.
Project description:We have recently confirmed miR-27a-3p as a crucial regulator of human adipogenesis (Wu H, Pula T, Tews D, Amri E-Z, Debatin K-M, Wabitsch M, Fischer-Posovszky P, Roos J. microRNA-27a-3p but Not -5p Is a Crucial Mediator of Human Adipogenesis. Cells. 2021; 10(11):3205. https://doi.org/10.3390/cells10113205 ). MiR-27a-5p did not impair human adipogenesis. However, since several publications state that miR-27a ist also a crucial regulator of UCP1, we were interested if miR-27a-3p or miR-27a-5p regulatas UCP1 and other thermogenesis related genes. We found a strong regulation of UCP1 with functional relevance for the cellular metabolism by miR-27a-5p.To asesse the mRNA gene expression pattern, mRNA sequencing was performed.
Project description:Sepsis is a life-threatening condition with high hospital mortality. Elevated mortality has also been observed in patients after hospital discharge, associated with post sepsis syndrome (PSS), causing systemic impairments and reduced life quality. The etiology of PSS is still not completely known but certainly involves inflammation. Extracellular vesicles (EV) are recognized as a notable mechanism of intercellular communication in inflammatory processes. It has been reported that EV microRNA (miRNA) production patterns during the acute phase of the disease may persist until after sepsis resolution and are associated with PSS. Methods: We employed mass spectrometry and qPCR to characterize the protein and miRNA composition of plasma-derived EVs of 35 patients during sepsis-related hospitalization and after discharge (post-sepsis) for up to three years. Findings: Fifteen differentially expressed EVs miRNAs (DEMiRs) were identified in septic patients compared to the control group. Predictive analyses revealed that these DEMiRs could influence inflammation by modulating pathways mediated by the activation of NF-κB, STAT3, and TLR4. Thirteen miRNAs (-15b-5p, -16-5p, -20a-5p, -25-3p, -27a-3p, -29a-3p, -30d-5p, -93-5p, -146a-5p, -148a -3p, -191-5p, -195-5p, -223-3p) were downregulated in the death group compared to the survivor group and are candidates for serving as prognostic markers of survival in the Intensive Care Unit. The expression of 11 miRNAs (-15b-5p, -16-5p, -21-5p, -25-3p, -27a-3p, -29a-3p, -30d-5p, -93-5p, -146a-5p -195- 5p and -223-3p) was lower one year after ICU discharge than the control group. Interpretation: The miRNAs identified in the present study represent potential biomarkers for the survival prognosis of post-sepsis patients.
Project description:MiRNAs have been shown to alter both protein expression and secretion in different cellular contexts. By combining in vitro, in vivo and in silico techniques, we demonstrated that overexpression of pre-miR-1307 reduced the ability of breast cancer cells to induce endothelial cell sprouting and angiogenesis. However, the molecular mechanism behind this and the effect of the individual mature miRNAs derived from pre-miR-1307 on protein secretion and is largely unknown. Here, we overexpressed miR-1307-3p|0, -3p|1 and 5p|0 in MDA-MB-231 breast cancer cells and assessed the impact of miRNA overexpression on protein secretion by Mass Spectrometry. Unsupervised hierarchical clustering revealed a distinct phenotype induced by overexpression of miR-1307-5p|0 compared to the controls and to the 5’isomiRs derived from the 3p-arm. Together, our results suggest different impacts of miR-1307-3p and miR-1307-5p on protein secretion which is in line with our in vitro observation that miR-1307-5p, but not the isomiRs derived from the 3p-arm reduce endothelial cell sprouting in vitro. Hence these data support the hypothesis that miR-1307-5p is at least partly responsible for impaired vasculature in tumors overexpressing pre-miR-1307.
Project description:Despite the advances in the understanding of Huntington’s disease (HD), there is the need for molecular biomarkers to categorize mutation-carriers during the preclinical stage of the disease preceding functional decline. Small RNAs (sRNAs) are a promising source of biomarkers since their expression levels are highly sensitive to pathobiological processes. Here, using an optimized method for plasma extracellular vesicles (EVs) purification and an exhaustive analysis pipeline of sRNA sequencing data, we show that EV-sRNAs are downregulated early in mutation-carriers and that this deregulation is associated with premanifest cognitive performance. Seven candidate sRNAs (tRF-Glu-CTC, tRF-Gly-GCC, miR-451a, miR-21-5p, miR-26a-5p, miR-27a-3p, and let7a-5p) were validated in additional subjects, showing a significant diagnostic accuracy at premanifest stages. Of these, miR-21-5p was significantly decreased over time in a longitudinal study; and miR-21-5p and miR-26a-5p levels correlated with cognitive changes in the premanifest cohort. In summary, the present results suggest that deregulated plasma EV-sRNAs define an early biosignature in mutation carriers with specific species highlighting the progression and cognitive changes occurring at the premanifest stage.
Project description:BMSC-derived exosomes from ovariectomized rats (OVX-Exo) and sham-operated rats (Sham-Exo) were co-cultured with bone marrow-derived macrophages to study their effects on osteoclast differentiation. Next-generation sequencing was utilized to identify the differentially expressed miRNAs (DE-miRNAs) in OVX-Exo and Sham-Exo, while target genes were analyzed using bioinformatics. The regulatory effects of miR-27a-3p and miR-196b-5p on osteogenic differentiation of BMSCs and osteoclast differentiation were verified by gain-of-function and loss-of-function analyses.Osteoclast differentiation was significantly enhanced in the OVX-Exo treatment group compared to the Sham-Exo group. Twenty DE-miRNAs were identified in OVX-Exo and Sham-Exo, among which miR-27a-3p and miR-196b-5p promoted the expressions of osteogenic genes in BMSCs. In contrast, knockdown of miR-27a-3p and miR-196b-5p increased the expressions of osteoclastic genes in osteoclasts. These 20 DE-miRNAs were found to target 11435 mRNAs. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses revealed that these target genes were involved in several biological processes and osteoporosis-related signaling pathways.
Project description:Pancreatic β-cell dysfunction caused by obesity can be associated with alterations in the levels of microRNAs (miRNAs). However, the role of miRNAs in such processes remains elusive. Here, we show that pancreatic islet miR-27a-5p, which is markedly increased in obese mice and impairs insulin secretion, is mainly delivered by visceral adipocyte-derived extracellular vesicles (EVs). Depleting miR-27a-5p significantly improves insulin secretion and glucose intolerance in db/db mice. Supporting the function of EVs’ miR-27a-5p as a key pathogenic factor, intravenous injection of miR-27a-5p-containing EVs shows their distribution in mouse pancreatic islets. Tracing the injected AAV-miR-27a-5p (AAV-miR-27a) or AAV-FABP4-miR-27a-5p (AAV-FABP4-miR-27a) in visceral fat results in upregulating miR-27a-5p in EVs and serum, and elicits mouse pancreatic β-cell dysfunction. Mechanistically, miR-27a-5p directly targets L-type Ca2+ channel subtype CaV1.2 (Cacna1c) and reduces insulin secretion in β-cells. Overexpressing mouse CaV1.2 largely abolishes the insulin secretion injury induced by miR-27a-5p. These findings reveal a causative role of EVs’ miR-27a-5p in visceral adipocyte-mediated pancreatic β-cell dysfunction in obesity-associated type 2 diabetes mellitus.
Project description:MicroRNAs (miRNAs) are short noncoding RNAs that shape the gene expression landscape, including during the pathogenesis of temporal lobe epilepsy (TLE). In order to provide a full catalog of the miRNA changes that happen during experimental TLE, we sequenced Argonaute 2-loaded miRNAs in the hippocampus of three different animal models at regular intervals between the time of the initial precipitating insult to the establishment of spontaneous recurrent seizures. The commonly upregulated miRNAs were selected for a functional in vivo screen using oligonucleotide inhibitors. This revealed anti-seizure phenotypes upon inhibition of miR-10a-5p, miR-21-5p and miR-142-5p as well as neuroprotection-only effects for inhibition of miR-27a-3p and miR-431-5p. Pathway enrichment analysis on predicted and validated targets of these miRNAs indicated a role for TGFβ signaling in a shared seizure-modifying mechanism. Together, these results identify functional miRNAs in the hippocampus and a pipeline of new targets for seizure control in epilepsy.
Project description:Applying Next Generation Sequencing technique we compared the miRNA expression pattern of tumor tissue sample of 6 GPs and peritumoral region of 6 lower grade (I-II) Glioma patients, serving as control group. To determine the difference on miRNA expresion level between GBM and control cases, we performed cluster analysis on the NGS dataset of 6 replicates for each of the two goups of samples with iDEP 96 software. In order to characterize the extent of up- or downregulation, log2FC values were calculated using the iDEP.96 web tool applying the DESeq2 algorithm. On the base of that 117 known miRNAs were identified to be differentially expressed using a threshold of false discovery rate (FDR) <0.05 and fold-change> 2 during the analysis. Among them, 35 miRNAs were upregulated (log2FC > 2) and 82 miRNAs were downregulated (log2FC < -2) with biological revelance in tissue samples comparing with the control samples. To validate our results obtained by NGS, five upregulated miRNAs: hsa-miR-196a-5p, hsa-miR-21-3p, hsa-miR-92b-5p, hsa-miR-10b-3p, hsa-miR-503-5p and three downregulated miRNAs: hsa-mir-383-5p, hsa-mir-490-3p, hsa-mir-1224-3p were chosen for RT-qPCR analysis. As the result of that hsa-miR-196a-5p, hsa-miR-21-3p, and hsa-miR-10b-3p was significantly upregulated while hsa-mir-383-5p and hsa-mir-490-3p was significantly downregulated, compared with those in the control samples. The other three miRNAs: hsa-miR-1224-3p, hsa-miR-92b-5p, hsa-miR-503-5p did not show significant difference between the control group and GPs.