Project description:Our previous studies have revealed that treatment of pregnant rats with 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD, 1 M-NM-<g/kg) at gestational day (GD) 15 reduces the pituitary synthesis of luteinizing hormone (LH) during late fetal and early postnatal period, leading to imprinting of defects in sexual behaviors at adulthood. However, it remains obscure how the attenuation of pituitary LH links to sexual immaturity. To address this issue, we firstly performed a DNA microarray analysis to identify the gene(s) responsible for dioxin-induced sexual immaturity, using the pituitary and hypothalamus of male pups, at the age of postnatal day (PND)70, born from TCDD-treated dams. Among the reduced genes, we focused on gonadotropin-releasing hormone (GnRH) in the hypothalamus, because of its role in sexual behaviors suggested so far. The present study strongly suggests that maternal exposure to TCDD fixes the status of the lowered expression of GnRH in the offspring by reducing steroidogenesis at perinatal stage, and this is the mechanism for the imprinting of defects in sexual behaviors at adulthood. Total RNA was isolated from the pituitary and hypothalamus of PND70 male pups born from the dams treated with TCDD (1 M-NM-<g/kg) or vehicle at GD15, using an RNeasy Mini Kit (QIAGEN). To identify the gene(s) the altered expression of which is fixed and linked to defects in sexual behaviors, the profile of gene expression was analyzed using the Illumina RatRef-12 Expression BeadChip. This series includes two dataset; hypothalamic and pituitary samples (each case; N=3x2). The normalization applied each dataset.
Project description:Our previous studies have revealed that treatment of pregnant rats with 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD, 1 μg/kg) at gestational day (GD) 15 reduces the pituitary synthesis of luteinizing hormone (LH) during late fetal and early postnatal period, leading to imprinting of defects in sexual behaviors at adulthood. However, it remains obscure how the attenuation of pituitary LH links to sexual immaturity. To address this issue, we firstly performed a DNA microarray analysis to identify the gene(s) responsible for dioxin-induced sexual immaturity, using the pituitary and hypothalamus of male pups, at the age of postnatal day (PND)70, born from TCDD-treated dams. Among the reduced genes, we focused on gonadotropin-releasing hormone (GnRH) in the hypothalamus, because of its role in sexual behaviors suggested so far. The present study strongly suggests that maternal exposure to TCDD fixes the status of the lowered expression of GnRH in the offspring by reducing steroidogenesis at perinatal stage, and this is the mechanism for the imprinting of defects in sexual behaviors at adulthood.
Project description:2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) causes the many forms of reproductive toxicity, such as defects in sexual behaviors, in pups of which mother is exposed to this substance at lower doses. However, the mechanism underlying these defects remains to be clarified in spite of many researches conducted so far. Our previous studies have revealed that maternal treatment with TCDD attenuates the production of pituitary gonadotropins [luteinizing hormone (LH) and follicle-stimulating hormone] in the late fetuses, leading to the impairment of sexual behavior in adulthood. To identify the target genes for a fetal reduction in gonadotropin β-subunit, we performed DNA microarray analysis using the fetal pituitary and its regulatory organ, the hypothalamus. The result showed that TCDD induced histone deacetylases (HDACs), and altered the expression of genes including gonadotropin-releasing hormone and activin signaling in the fetal pituitary. Moreover, our data indicated that the increased deacetylation of histone due to HDAC induction plays a critical role for a dioxin-induced attenuation of LHβ in the fetal pituitary. This study suggests a novel molecular mechanism explaining dioxin-produced reproductive toxicity.
Project description:We report the RNAseq-based transcriptome profiles of rat gestation day 20 dam liver, fetal male and female liver, fetal male pituitary, and fetal testis following in utero exposure to either 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) or 2,3,7,8-tetrachlorodibenzofuran (TCDF). Two exposure models were examined: 1) pregnant rats exposed to either a dose response series of TCDD or TCDF from gestation day 6 - 20 or 2) pregnant rats exposed to a single dose of TCDD or TCDF on gestation day 15. These data support a mode-of-action for dioxin-induced rat male reproductive toxicity involving key events in both the fetal pituitary (reduced gonadotropin production) and fetal testis (reduced Leydig cell cholesterologenesis and steroidogenesis) which are hypothesized to decrease perinatal Sertoli cell proliferation and culminate in reduced spermatogenesis. The lack of a TCDF effect on proposed key events may be due to a higher rate of metabolic clearance relative to TCDD.
Project description:2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) causes the many forms of reproductive toxicity, such as defects in sexual behaviors, in pups of which mother is exposed to this substance at lower doses. However, the mechanism underlying these defects remains to be clarified in spite of many researches conducted so far. Our previous studies have revealed that maternal treatment with TCDD attenuates the production of pituitary gonadotropins [luteinizing hormone (LH) and follicle-stimulating hormone] in the late fetuses, leading to the impairment of sexual behavior in adulthood. To identify the target genes for a fetal reduction in gonadotropin β-subunit, we performed DNA microarray analysis using the fetal pituitary and its regulatory organ, the hypothalamus. The result showed that TCDD induced histone deacetylases (HDACs), and altered the expression of genes including gonadotropin-releasing hormone and activin signaling in the fetal pituitary. Moreover, our data indicated that the increased deacetylation of histone due to HDAC induction plays a critical role for a dioxin-induced attenuation of LHβ in the fetal pituitary. This study suggests a novel molecular mechanism explaining dioxin-produced reproductive toxicity. Pregnant Wistar rats were orally treated with TCDD (1 µg/kg in corn oil) at gestational day (GD)15. Then, the total RNA was extracted from the fetal pituitary and hypothalamus at GD20. To identify the target genes the alteration of which contributes to a reduction in fetal gonadotropin β-subunit, the profile of gene expression was analyzed using the Illumina RatRef-12 Expression BeadChip.
Project description:Formaldehyde (HCHO) is the simplest form of aldehyde and it is naturally present in a wide range of resources. In spite of its cosmopolitan presence, formaldehyde can have deleterious health effects at higher concentrations like leukemia. However, most of the studies carried out so far have focused on the effect of formaldehyde exposure through inhalation and not much has been studied on the its exposure through food. In this context, the present study was carried out to investigate the effect of formaldehyde exposure through drinking water on the liver proteome of rat which would not only be helpful in assessing the impact of formaldehyde on health of organisms but also would be helpful in understanding the mechanism of detoxification.
Project description:Male Sprague-Dawley rats were used to establish exhausted-exercise model by motorized rodent treadmill. Yu-Ping-Feng-San at doses of 2.18 g/kg was administrated by gavage before exercise training for 10 consecutive days. Quantitative proteomics was performed for assessing the related mechanism of Yu-Ping-Feng-San.
Project description:Chlorpyrifos is an organophosphorus insecticide that despite imposed restricitions on its use by the EPA, is one of the most commonly used insecticides. Although CPF is so widely used little is known about its effect on overall gene expression in vivo. DNA microarray technology was used to determine differential gene expression resulting from chlorpyrifos (CPF) exposure. Keywords: Dose course