Project description:Because TP53 mutation and CDH1 inactivation are the most common abnormalities found in human type II endometrial carcinomas, the contribution of dysfunctional TRP53 and CDH1 in the tumor microenvironment to induce type II endometrial cancer was characterized using mouse as a model. The results of our analysis revealed that conditional deletion of Cdh1 and Trp53 in the uterus regulated most of the genes categorized by their involvement in inflammatory responses, immune cell trafficking, cellular movement, cell-to-cell signaling and interaction and cellular growth and proliferation. A direct comparison of mouse uteri (n=3) from control, single ablation of Cdh1 or Trp53, and ablation of both Cdh1 and Trp53 at 2 months of age.
Project description:Because TP53 mutation and CDH1 inactivation are the most common abnormalities found in human type II endometrial carcinomas, the contribution of dysfunctional TRP53 and CDH1 in the tumor microenvironment to induce type II endometrial cancer was characterized using mouse as a model. The results of our analysis revealed that conditional deletion of Cdh1 and Trp53 in the uterus regulated most of the genes categorized by their involvement in inflammatory responses, immune cell trafficking, cellular movement, cell-to-cell signaling and interaction and cellular growth and proliferation.
Project description:To identify the mechanisms driving resistance upon KrasG12V ablation, we established lung cancer cell lines that carried loxP sequences flanking the exon 1 of Kras containing the G12V mutation (Kras +/loxG12Vlox), and lacked Trp53 alleles (Trp53 -/-). Tumor cells were infected with Adeno-Cre particles to excise the floxed sequences and individual cells that survived were expanded for further analysis.
Project description:The functional status of the tumor repressor protein (TP53 or TRP53) is a defining feature of ovarian cancer. Mutant or null alleles of TP53 are expressed in greater than 90% of all high-grade serous adenocarcinomas. Wild type TP53 is elevated in low-grade serous adenocarcinomas in women and in our Pten/Kras/Amhr2-Cre mutant mouse model. Disruption of the Trp53 gene in this mouse model did not lead to high-grade ovarian cancer but did increase expression of estrogen receptor alpha (ERalpha; ESR1) and markedly enhanced the responsiveness of these cells to estrogen. Specifically, when Trp53 positive and Trp53 null mutant mice were treated with estradiol or vehicle, only the Trp53 null and Esr1 positive tumors respond vigorously to estradiol in vivo and exhibit features characteristic of high-grade type ovarian cancer: invasive growth into the ovarian stroma, rampant metastases to the peritoneal cavity and signs of genomic instability. Estrogen promoted and progesterone suppressed the growth of Trp53 null ovarian tumors and tumor cells injected intraperitoneally (IP), subcutaneously (SC) or when grown in matrigel. Exposure of the Trp53 depleted cells to estrogen also has a profound impact on the tumor microenvironment and immune-related events. These results led to the new paradigm that TRP53 status is related to the susceptibility of transformed ovarian surface epithelial (OSE) cells to estradiol-induced metastases and genomic instability. This novel finding is relevant not only for women during their reproductive years but also for women on hormone (estradiol) replacement therapies. A direct comparison of ovarian surface epithelia cells from two different genotype mice
Project description:Our findings establish a key role for the coregulator, Repressor of Estrogen receptor Activity (REA), in controlling the timing and magnitude of decidualization in human endometrial stromal cells in vitro and in the mouse uterus in vivo, and suggest that REA functions to synchronize uterine differentiation with concurrent embryo development, which is essential for optimal implantation and fertility. The findings highlight that REA physiologically restrains endometrial stromal cell decidualization, controlling the timing and magnitude of decidualization to enable proper synchronization of uterine differentiation with concurrent embryo development that is essential for implantation and optimal fertility.
Project description:ChickenM-BM- ovalbumin upstream promoter-transcription factor II (COUP-TFII; NR2F2) is an orphan nuclear receptor involved in cell-fate specification, organogenesis, angiogenesis and metabolism. Ablation of COUP-TFII in the mouse uterus causes infertility due to defects in embryo attachment and impaired uterine stromal cell decidualization. Although the function of COUP-TFII in uterine decidualization has been described in mice, its role in the human uterus remains unknown. To better elucidate the mechanisms with which COUP-TFII regulates target gene transcription, genome-wide COUP-TFII binding sites in human endometrial stromal cells (HESC) treated with deciduogenic hormones were identified using ChIP-seq. A total of 16,298 intervals (binding regions) for COUP-TFII were identified compared with the input in HESC chromatin with a very low false discovery rate (0.17%) using a stringent cutoff of p =1x10-10. Distribution of intervals showed that more than half (58.6%) of the COUP-TFII binding sites are located within 10 kb of gene boundaries. 7.5% of total intervals reside within the 10 kb promoter region. A total of 6,077 unique genes were identified to have COUP-TFII binding sites within 10 kb of their gene boundaries. Examination of NR2F2 binding in pooled primary human endometrial stromal cells from 6 healthy women upon decidualization with a hormone cocktail of cAMP, E2 and medroxyprogesterone acetate.
Project description:We wished to investigate the role of E-cadherin loss in our mouse parietal cell/pre-parietal cell E-cadherin knock-out, p53 knock-out, oncogenic Kras induced model of gastric cancer. As such, we isolated RNA from stomach tissue from our E-cadherin knock-out model (Atp4b-Cre;Cdh1(fl/fl);Kras(LSL-G12D/+);Trp53(fl/fl);Rosa26(LSL-YFP/LSL-YFP)) and our E-cadherin heterozygous model (Atp4b-Cre;Cdh1(fl/+);Kras(LSL-G12D/+);Trp53(fl/fl);Rosa26(LSL-YFP/LSL-YFP)). We then performed a microarray on this stomach tissue from four independent mice of each genotype. Differentially expressed genes were identified and gene set overlap analysis was used to identify pathways enriched in one model over the other.
Project description:SCLC is the most aggressive subtype of lung cancer characterized by a remarkable response to chemotherapy followed by development of resistance. Mechanisms of initial sensitivity and of subsequent resistance are not understood. Here we highlight a broad tumor heterogeneity in mouse models of SCLC, which includes a CDH1 high primary cisplatin-resistant peripheral neuroendocrine lesion with unique metabolic and structural profile. Cisplatin treatment preferentially eliminates CDH1 negative secondary tumor leaving behind CDH1 high primary lesions, thus revealing a striking differential response. We profile global protein and messenger RNA levels in vehicle and cisplatin treated lung tumor populations and find a marked reduction in proliferation and a pronounced metabolic shift following cisplatin-treatment. Our proteo-transcriptomic analysis gives insight into gene expression alterations that characterize cisplatin resistance and uncovers potential novel targets to overcome resistance of distinct populations. SCLC tumors in the mouse show heterogeneity which appears, as might be the case in humans, to be one of the underlying mechanisms of differential sensitivity to cisplatin.
Project description:Forkhead box A2 (FOXA2) is a critical regulator of endometrial gland development in mice. In the adult mouse uterus, FOXA2 is expressed solely in the GE cells of the endometrium. Conditional deletion of Foxa2 after birth in the uterus, using the progesterone receptor Cre mouse (PgrCre), impeded gland development, thereby rendering the adult mouse infertile due to defects in blastocyst implantation stemming from a lack of endometrial glands and their secretions. As a first step to begin understanding the FOXA2 function in the endometrial glands of the uterus, genome-wide investigation of in vivo FOXA2 and RNA polymerase II (POL2) binding target regions in the neonatal and adult uterus was determined by chromatin immunoprecipitation followed by massively parallel sequencing (ChIP-Seq). In order to determine the transcriptional regulatory networks mediating FOXA2 regulation of endometrial gland development and function, chromatin immunoprecipitation and massively parallel sequencing (ChIP-Seq) was used to create a genome-wide profile of in vivo FOXA2-binding sites in the developing (PD 12) and adult (DOPP 2.5 and 3.5) mouse uterus.
Project description:The gut-uterus axis plays a pivotal role in the pathogenesis of endometrial cancer (EC). However, the correlations between the endometrial microbiome and endometrial tumor transcriptome in patients with EC and the impact of the endometrial microbiota on hematological indicators have not been thoroughly clarified. In this prospective study, endometrial tissue samples collected from EC patients (n = 30) and healthy volunteers (n = 10) were subjected to 16S rRNA sequencing of the microbiome. The 30 paired tumor and adjacent nontumor endometrial tissues from the EC group were subjected to RNAseq. Result: We found that Pelomonas and Prevotella were enriched in the EC group with a high tumor burden. Further transcriptome analysis identified 8 robust associations between Prevotella and fibrin degradation-related genes expressed within ECs. Conclusions: Our results suggest that the increasing abundance of Prevotella in endometrial tissue combined with high serum DD and FDP contents may be important factors associated with tumor burden.