Project description:Given the criticle role of gut bacteria involve in number of diseases, the gut microbiota from young and aged people were estimated using 16s rRNA next-generation sequencing. This study will benefit to identify the role of gut bacteria on the pathegenic mechasim of aging relative diseases.
Project description:Gut microbiota were assessed in 540 colonoscopy-screened adults by 16S rRNA gene sequencing of stool samples. Investigators compared gut microbiota diversity, overall composition, and normalized taxon abundance among these groups.
Project description:Human diet emerges as a pivotal determinant of gut microbiota composition and function. Identification of the bacterial taxa targeted by diet derived factors with causal beneficial rather than detrimental effects on therapy and their mechanism of action is challenging but necessary for future clinical progress. The germ free mice colonized with human gut bacteria and four-plants derived nanoparticles uptaking bacteria were sorted with flow cytometry and identified with 16s rRNA next-generation sequencing.
Project description:Here we report 16s rRNA data in gut microbiota of hepatocellular carcinoma (HCC) patients with HBV induced HCC (HBVC) and non-HBV induced HCC (NHBVC) compared with healthy volunteers. A total of 2047 operational taxonomic units (OTUs) were identified in the sequence data. Our data shows that the NHBVC patients harbor lower anti-inflammatory bacteria and more pro-inflammatory bacteria, while the HBVC patients harbor more anti-inflammatory bacteria.
Project description:To explore the effects of gut microbiota of young (8 weeks) or old mice (18~20 months) on stroke, feces of young (Y1-Y9) and old mice (O6-O16) were collected and analyzed by 16s rRNA sequencing. Then stroke model was established on young mouse receive feces from old mouse (DOT1-15) and young mouse receive feces from young mouse (DYT1-15). 16s rRNA sequencing were also performed for those young mice received feces from young and old mice.
Project description:To compare the similarities and differences in species diversity of the gut microbiota between the patients with melasma and healthy subjects. The feces were collected for 16S rRNA sequencing analysis of the gut microbiota.
Project description:In this study, we performed a comparative analysis of gut microbiota composition and gut microbiome-derived bacterial extracellular vesicles (bEVs) isolated from patients with solid tumours and healthy controls. After isolating bEVs from the faeces of solid tumour patients and healthy controls, we performed spectrometry analysis of their proteomes and next-generation sequencing (NGS) of the 16S gene. We also investigated the gut microbiomes of faeces from patientsand controls using 16S rRNA sequencing. Machine learning was used to classify the samples into patients and controls based on their bEVs and faecal microbiomes.
Project description:Primary outcome(s): Analysis of the diversity and composition of the gut microbiome by 16S rRNA sequencing
Study Design: Observational Study Model : Others, Time Perspective : Prospective, Enrollment : 60, Biospecimen Retention : Collect & Archive- Sample with DNA, Biospecimen Description : Blood, Stool
Project description:A phylogenetic microarray targeting 66 families described in the human gut microbiota has been developped aud used to monitor the gut microbiota's structure and diversity. The microarray format provided by Agilent and used in this study is 8x15K. A study with a total of 4 chips was realized. Arrays 1 and 2: Hybridization with 100ng of labelled 16S rRNA gene amplicons from a mock community sample and 250ng of labelled 16S rRNA gene amplicons from 1 faecal sample. Each Agilent-030618 array probe (4441) was synthetized in three replicates. Arrays 3 and 4: Hybridization with 250ng of labelled 16S rRNA gene amplicons from 2 faecal samples. Each Agilent-40558 array probe (4441) was synthetized in three replicates.
Project description:Gut microbial profiling of uterine fibroids (UFs) patients comparing control subjects. The gut microbiota was examined by 16S rRNA quantitative arrays and bioinformatics analysis. The goal was to reveal alterations in the gut microbiome of uterine fibroids patients.