Project description:Pea (Pisum. sativum L.) is a traditional and important edible legume that can be sorted into grain pea and vegetable pea according to their harvested maturely or not. Vegetable pea by eating the fresh seed is becoming more and more popular in recent years. These two type peas display huge variations of the taste and nutrition, but how seed development and nutrition accumulation of grain pea and vegetable pea and their differences at the molecular level remains poorly understood. To understand the genes and gene networks regulate seed development in grain pea and vegetable pea, high throughput RNA-Seq and bioinformatics analysis were used to compare the transcriptomes of vegetable pea and grain pea developing seed. RNA-Seq generated 18.7 G raw data, which was then de novo assembled into 77,273 unigenes with a mean length of 930 bp. Functional annotation of the unigenes was carried out using the nr, Swiss-Prot, COG, GO and KEGG databases. There were 459 and 801 genes showing differentially expressed between vegetable pea and grain pea at early and late seed maturation phases, respectively. Sugar and starch metabolism related genes were dramatically activated during pea seed development. The up-regulated of starch biosynthesis genes could explain the increment of starch content in grain pea then vegetable pea; while up-regulation of sugar metabolism related genes in vegetable pea then grain pea should participate in sugar accumulation and associated with the increase in sweetness of vegetable pea then grain pea. Furthermore, transcription factors were implicated in the seed development regulation in grain pea and vegetable pea. Thus, our results constitute a foundation in support of future efforts for understanding the underlying mechanism that control pea seed development and also serve as a valuable resource for improved pea breeding.
Project description:Bioinformatic prediction, deep sequencing of microRNA and expression analysis during phenotypic plasticity in the pea aphid acyrthosiphon pisum We developed high throughput Solexa sequencing and bioinformatic analyses of the genome of the pea aphid Acyrthosiphon pisum in order to identify the first miRNAs from a hemipteran insect. By combining these methods we identified 155 miRNAs including 56 conserved and 99 new miRNAs. Moreover, we investigated the regulation of these miRNAs in different alternative morphs of the pea aphid by analysing the expression of miRNAs across the switch of reproduction mode.
Project description:We developed high throughput Solexa sequencing and bioinformatic analyses of the genome of the pea aphid Acyrthosiphon pisum in order to identify the first miRNAs from a hemipteran insect. By combining these methods we identified 155 miRNAs including 56 conserved and 99 new miRNAs. Moreover, we investigated the regulation of these miRNAs in different alternative morphs of the pea aphid by analysing the expression of miRNAs across the switch of reproduction mode.
Project description:Bioinformatic prediction, deep sequencing of microRNA and expression analysis during phenotypic plasticity in the pea aphid acyrthosiphon pisum We developed high throughput Solexa sequencing and bioinformatic analyses of the genome of the pea aphid Acyrthosiphon pisum in order to identify the first miRNAs from a hemipteran insect. By combining these methods we identified 155 miRNAs including 56 conserved and 99 new miRNAs. Moreover, we investigated the regulation of these miRNAs in different alternative morphs of the pea aphid by analysing the expression of miRNAs across the switch of reproduction mode. deep sequencing of small RNAs from parthenogenetic Acyrthosiphon pisum
Project description:We developed high throughput Solexa sequencing and bioinformatic analyses of the genome of the pea aphid Acyrthosiphon pisum in order to identify the first miRNAs from a hemipteran insect. By combining these methods we identified 155 miRNAs including 56 conserved and 99 new miRNAs. Moreover, we investigated the regulation of these miRNAs in different alternative morphs of the pea aphid by analysing the expression of miRNAs across the switch of reproduction mode. An array including the 155 aphid microRNAs was designed in order to follow the expression of aphid microRNAs during the modification of reproduction mode of the pea aphid
Project description:We report the application of next generation sequencing technology for high-throughput profiling of cytosine methylation in adult rat liver tissue.
Project description:We report the application of RNA sequencing with Next Generation Sequencing technology for high-throughput status of transcripts in wild-type and ubr1-deletion Beauveria bassiana cultured in germination media (GM).
Project description:We report the application of next generation sequencing technology for high-throughput profiling of cytosine methylation in adult rat liver tissue. To investigate the role of intragenic methylation, we generated the first high resolution methylation map of rat liver tissue and compared it with the proteome of the same rat tissue.
Project description:We report the application of next generation sequencing technology for high-throughput profiling of transcriptome in HCC murine cells treated by anti-PD-1 or IFN-α or anti-PD-1 combined with IFN-α
Project description:We report the application of RNA sequencing with Next Generation Sequencing technology for high-throughput status of transcripts in wild-type and Sur7-deletion Beauveria bassiana grown on nutrient-sufficient media (SDAY) or nutrient-limiting media (CDA), respectively