Project description:The quiescent center (QC) plays an essential role during root development by creating a microenvironment that preserves the stem cell fate of its surrounding cells. Strikingly, in order to retain root structure, QC cells only occasionally self-renew, displaying a proliferation rate far below that of all other cells within the root meristem. Previously, the APC/CCCS52A2 ubiquitine ligase and brassinosteroid signaling pathways have been found to antagonistically control Arabidopsis thaliana QC cell proliferation. Here, we demonstrate that both pathways converge on the ERF115 transcription factor that acts as a rate-limiting factor of QC cell division through transcriptional control of the autocrine phytosulfokine PSK5 peptide hormone. ERF115 marks QC cell division but is restrained through proteolysis by the APC/CCCS52A2 ubiquitine ligase, whereas QC proliferation is driven by brassinosteroid-dependent ERF115 expression. Combined, these two antagonistic mechanisms delimit the ERF115-PSK5 activity and QC renewal. Our results reveal a unique cell cycle regulatory mechanism that accounts for the low proliferation rate of QC cells within a surrounding population of highly mitotic active cells.
Project description:The quiescent center (QC) plays an essential role during root development by creating a microenvironment that preserves the stem cell fate of its surrounding cells. Strikingly, in order to retain root structure, QC cells only occasionally self-renew, displaying a proliferation rate far below that of all other cells within the root meristem. Previously, the APC/CCCS52A2 ubiquitine ligase and brassinosteroid signaling pathways have been found to antagonistically control Arabidopsis thaliana QC cell proliferation. Here, we demonstrate that both pathways converge on the ERF115 transcription factor that acts as a rate-limiting factor of QC cell division through transcriptional control of the autocrine phytosulfokine PSK5 peptide hormone. ERF115 marks QC cell division but is restrained through proteolysis by the APC/CCCS52A2 ubiquitine ligase, whereas QC proliferation is driven by brassinosteroid-dependent ERF115 expression. Combined, these two antagonistic mechanisms delimit the ERF115-PSK5 activity and QC renewal. Our results reveal a unique cell cycle regulatory mechanism that accounts for the low proliferation rate of QC cells within a surrounding population of highly mitotic active cells. ChIP-seq analysis of genes bound by the ERF115 transcription factor, using mock ChIP with wild type cells as negative control. Analyzed by Illumina HiSeq
Project description:This experiment was set up in order to identify the (direct) transcriptional targets of the Ethylene Response Factor 115 (ERF115) transcription factor. Because ERF115 expression occurs in quiescent center (QC) cells and strong effects on the QC cells were observed in ERF115 overexpression plants, root tips were harvested for transcript profiling in order to focus on root meristem and QC specific transcriptional targets.
Project description:We report the discovery of a root growth program in Arabidopsis that is independent of a functional quiescent center (QC). In this regulatory program, PHABULOSA (PHB), posttranscriptionally regulated by SHR and SCR, plays a central role. In phb shr and phb scr mutants, root meristem/growth activity recovers significantly. Interestingly, this recovery does not accompany the resurgence of QC cells. PHB regulates apical root growth in stele cells of the root meristem, located proximal to the QC. Our genome-wide investigation suggests that PHB exerts its influence on root growth by regulating auxin-cytokinin homeostasis. Apical root growth was restored when cytokinin levels were genetically reduced in the shr mutant. Conversely, when miRNA-resistant PHB was expressed in the root stele cells, apical root growth and meristem functions were significantly inhibited without blocking the QC identity. Taken together, our investigation reveals two mechanisms through which SHR regulates root growth and stem cell activities: one is to specify and maintain the QC and the other is to regulate the proximal meristem activity through PHB and cytokinin. In this regulation, QC seems to be more involved in maintaining the “growth signal” and thus ensure the indeterminate root growth.
Project description:This experiment was set up in order to identify the (direct) transcriptional targets of the Ethylene Response Factor 115 (ERF115) transcription factor. Because ERF115 expression occurs in quiescent center (QC) cells and strong effects on the QC cells were observed in ERF115 overexpression plants, root tips were harvested for transcript profiling in order to focus on root meristem and QC specific transcriptional targets. Wild-type (Col-0 ecotype), erf115 mutant (SALK_021981) and ERF115 overexpressing (p35S:ERF115 ORF) root tips (three replicates each) were harvested and subjected to transcript profiling, using the Col-0 samples as control reference.
Project description:In multicellular organisms, communication between cells is vital for their fate determination. In plants, the quiescent center (QC) signals to adjacent stem cells to maintain them undifferentiated. However, how surrounding stem cells instruct the QC remains poorly understood. Here we show that in the Arabidopsis root, microRNA160 (miR160) moves from vascular stem cells to the QC, where it degrades the mRNAs of two auxin response factors, ARF10 and ARF17. This degradation relieves BRAVO from direct transcriptional repression, maintaining QC quiescence. We further identify that blocking miR160 movement due to DNA damage-induced vascular stem cell death and restricted symplastic transport reduces BRAVO and WOX5 expression, leading to QC division to replenish damaged stem cells during root regeneration. Together, our results demonstrate that a transcriptional axis initiated by mobile miR160 regulates the QC and stem cell behavior, advancing our understanding of the communication between stem cells and their surrounding cellular environment.
Project description:To get further insights on the micro-nanoplastic (MNP) effects on plants, the aim of this study was to: 1) shed light on the transcriptome changes provoked by two different polyethylene terephthalate (PET) MNPs in plant roots; 2) determine their effects on key plant growth parameters in hydroponically-cultivated Arabidopsis thaliana. MNPs of transparent (Tr-PET) and blue (Bl-PET) material caused a significant reduction in root length, while only Bl-PET significantly reduced rosette area. Plant fresh and dry weight did not change, even though various OJIP-test parameters decreased in the presence of MNPs. RNA-seq data showed that Bl-PET and, especially, Tr-PET affected gene expression in comparison to controls. Tr-PET induced starch degradation and isoprenoids, while glycolysis, trehalose metabolism and fermentation were generally repressed. Tr-PET upregulated genes involved in signaling of xenobiotics, whereas Bl-PET scarcely affected root transcriptomic profile, activating few gene categories for abiotic stresses. Regarding hormones, genes involved in ABA response were repressed, while brassinosteroid-related genes were differentially regulated by Tr-PET. Both MNPs, but especially Tr-PET, upregulated major latex protein-related genes. These results allowed to gain insight into the effects of MNP contamination in plant metabolism, identifying targets for biotechnological strategies to enhance plant tolerance and phytoremediation of these xenobiotic agents.
Project description:We report the discovery of a root growth program in Arabidopsis that is independent of a functional quiescent center (QC). In this regulatory program, PHABULOSA (PHB), posttranscriptionally regulated by SHR and SCR, plays a central role. In phb shr and phb scr mutants, root meristem/growth activity recovers significantly. Interestingly, this recovery does not accompany the resurgence of QC cells. PHB regulates apical root growth in stele cells of the root meristem, located proximal to the QC. Our genome-wide investigation suggests that PHB exerts its influence on root growth by regulating auxin-cytokinin homeostasis. Apical root growth was restored when cytokinin levels were genetically reduced in the shr mutant. Conversely, when miRNA-resistant PHB was expressed in the root stele cells, apical root growth and meristem functions were significantly inhibited without blocking the QC identity. Taken together, our investigation reveals two mechanisms through which SHR regulates root growth and stem cell activities: one is to specify and maintain the QC and the other is to regulate the proximal meristem activity through PHB and cytokinin. In this regulation, QC seems to be more involved in maintaining the M-bM-^@M-^\growth signalM-bM-^@M-^] and thus ensure the indeterminate root growth. Total 7 samples (2 replicates of shr-2 mutant (high PHABULOSA expression) vs. 2 replicates of shr-2 phb-6 (low/absent PHABULOSA expression). 3 replicates of Wild type used as reference sample.
Project description:Brassinosteroids (BRs) are steroid hormones involved in multiple processes of plant growth and development, and the adaptation to the environment. Some of the processes regulated by BRs are meristem activity and stem cell divisions. At the core of the root stem cell niche, it is placed the quiescent center (QC), that act as a cell reservoir. QC cells only trigger their divisions when need to replenish the stem cells, for example, after a DNA damage. BR signaling is in charge of triggering these QC divisions, but the exact mechanisms of how this process is regulated is still unknown. Here, we use an interdisciplinary approach, using Arabidopsis thaliana as a model system, including molecular genetics, physiology and bioinformatics to decipher the role of BR receptors upon DNA damage regulating the QC divisions. The results uncover novel roles for the BR-receptor kinase BRL3 (BRI1-like 3) receptor in DNA damage response (DDR) in plants, by modulating the DNA repair and the cell-cycle progression. We identified candidate tissue-specific transcriptional regulator, specifically expressed in the QC cells, the RNR2A (RIBONUCLEOTIDE REDUCTASE 2A), in charge of maintaining dNTPs (deoxynucleotide triphosphates) supply during DNA synthesis that is modulated by BRL3 downstream signaling events. Considering the importance of plant stem cells and their tissues for biomass accumulation and constantly exposed to adverse environmental stresses that can cause DNA damage or cell-cycle arrest in the RAM, here we stablished the mechanism linking root meristematic activity to the DDR through the cell-specific steroid receptor kinase BRL3.
Project description:Brassinosteroids (BRs) are steroid hormones involved in multiple processes of plant growth and development, and the adaptation to the environment. Some of the processes regulated by BRs are meristem activity and stem cell divisions. At the core of the root stem cell niche, it is placed the quiescent center (QC), that act as a cell reservoir. QC cells only trigger their divisions when need to replenish the stem cells, for example, after a DNA damage. BR signaling is in charge of triggering these QC divisions, but the exact mechanisms of how this process is regulated is still unknown. Here, we use an interdisciplinary approach, using Arabidopsis thaliana as a model system, including molecular genetics, physiology and bioinformatics to decipher the role of BR receptors upon DNA damage regulating the QC divisions. The results uncover novel roles for the BR-receptor kinase BRL3 (BRI1-like 3) receptor in DNA damage response (DDR) in plants, by modulating the DNA repair and the cell-cycle progression. We identified candidate tissue-specific transcriptional regulator, specifically expressed in the QC cells, the RNR2A (RIBONUCLEOTIDE REDUCTASE 2A), in charge of maintaining dNTPs (deoxynucleotide triphosphates) supply during DNA synthesis that is modulated by BRL3 downstream signaling events. Considering the importance of plant stem cells and their tissues for biomass accumulation and constantly exposed to adverse environmental stresses that can cause DNA damage or cell-cycle arrest in the RAM, here we stablished the mechanism linking root meristematic activity to the DDR through the cell-specific steroid receptor kinase BRL3.