Project description:Eusocial insects have evolved the capacity to generate adults with distinct morphological, reproductive and behavioural phenotypes from the same genome. Recent studies suggest that RNA editing might enhance the diversity of gene products at the post-transcriptional level, particularly to induce functional changes in the nervous system. Using head samples from the leaf-cutting ant Acromyrmex echinatior, we compare RNA editomes across eusocial castes, identifying ca. 11,000 RNA editing sites in gynes, large workers and small workers. Those editing sites map to 800 genes functionally enriched for neurotransmission, circadian rhythm, temperature response, RNA splicing and carboxylic acid biosynthesis. Most A. echinatior editing sites are species specific, but 8M-bM-^@M-^S23% are conserved across ant subfamilies and likely to have been important for the evolution of eusociality in ants. The level of editing varies for the same site between castes, suggesting that RNA editing might be a general mechanism that shapes caste behaviour in ants. Analysis of genome-wide RNA editing in three different female castes of the the leaf-cutting ant Acromyrmex echinatior.
Project description:Eusocial insects have evolved the capacity to generate adults with distinct morphological, reproductive and behavioural phenotypes from the same genome. Recent studies suggest that RNA editing might enhance the diversity of gene products at the post-transcriptional level, particularly to induce functional changes in the nervous system. Using head samples from the leaf-cutting ant Acromyrmex echinatior, we compare RNA editomes across eusocial castes, identifying ca. 11,000 RNA editing sites in gynes, large workers and small workers. Those editing sites map to 800 genes functionally enriched for neurotransmission, circadian rhythm, temperature response, RNA splicing and carboxylic acid biosynthesis. Most A. echinatior editing sites are species specific, but 8–23% are conserved across ant subfamilies and likely to have been important for the evolution of eusociality in ants. The level of editing varies for the same site between castes, suggesting that RNA editing might be a general mechanism that shapes caste behaviour in ants.
Project description:In social insects, workers perform distinct tasks according to the caste they belong to, and workers from different castes differ in their age (nest workers are usually younger than foragers are). The caste shift thus seems inseparable from age, preventing from deciphering the role of labour division and age in regulating individual physiology and ageing rates. We set up an experimental protocol separating age and caste effects by defining four groups of black garden ant (Lasius niger) workers: young foragers (Y.F), old foragers (O.F), young nest workers (Y.NW) and old nest workers (O.NW). Proteomics highlighted differences between individuals according to their age, whereas metabolomics revealed caste-related differences. Our study highlighted that age and caste influence specifically different aspects of the physiology of ant workers.