Project description:A transcriptome study in mouse hematopoietic stem cells was performed using a sensitive SAGE method, in an attempt to detect medium and low abundant transcripts expressed in these cells. Among a total of 31,380 unique transcript, 17,326 (55%) known genes were detected, 14,054 (45%) low-copy transcripts that have no matches to currently known genes. 3,899 (23%) were alternatively spliced transcripts of the known genes and 3,754 (22%) represent anti-sense transcripts from known genes. Mouse hematopoietic stem cells were purified from bone marrow cells using negative and positive selection with a Magnetic-Activated Cell Sorter (MACS). total RNA and mRNA were purified from the purified cells using Trizol reagent and magnetic oligo dT beads. Double strand cDNAs were synthesized using a cDNA synthesis kit and anchored oligo dT primers. After NlaIII digestion, 3’ cDNAs were isolated and amplified through 16-cycle PCR. SAGE tags were released from the 3’ cDNA after linker ligation. Ditags were formed, concatemerized and cloned into a pZERO vector. Sequencing reactions were performed with the ET sequencing terminator kit. Sequences were collected using a Megabase 1000 sequencer. SAGE tag sequences were extracted using SAGE 2000 software.
Project description:A transcriptome study in mouse hematopoietic stem cells was performed using a sensitive SAGE method, in an attempt to detect medium and low abundant transcripts expressed in these cells. Among a total of 31,380 unique transcript, 17,326 (55%) known genes were detected, 14,054 (45%) low-copy transcripts that have no matches to currently known genes. 3,899 (23%) were alternatively spliced transcripts of the known genes and 3,754 (22%) represent anti-sense transcripts from known genes.
Project description:Several individual miRNAs (miRs) have been implicated as potent regulators of important processes during normal and malignant hematopoiesis. In addition, many miRs have been shown to fine-tune intricate molecular networks, in concert with other regulatory elements. In order to study hematopoietic networks as a whole, we first created a comprehensive map of global miR expression during early murine hematopoiesis. Next, we determined the copy number per cell for each miR in each of the examined stem and progenitor cell types. As data is emerging indicating that miRs function robustly mainly when they are expressed above a certain threshold (~100 copies per cell), our database provides a resource for determining which miRs are expressed at a potentially functional level in each cell type. Finally, we combine our miR expression map with matched mRNA expression data and external prediction algorithms, using a Bayesian modeling approach to create a global landscape of predicted miR-mRNA interactions within each of these hematopoietic stem and progenitor cell subsets. This approach identifies several interaction networks comprising a “stemness” signature in the most primitive hematopoietic stem cell (HSC) populations, as well as “myeloid” patterns associated with two branches of myeloid development. Six populations of mouse hematopoietic stem and progenitors have been analyzed (LT-HSC, ST-HSC, MPP, CMP, GMP, MEP). 2-3 replicates are included for each sample.
Project description:Several individual miRNAs (miRs) have been implicated as potent regulators of important processes during normal and malignant hematopoiesis. In addition, many miRs have been shown to fine-tune intricate molecular networks, in concert with other regulatory elements. In order to study hematopoietic networks as a whole, we first created a comprehensive map of global miR expression during early murine hematopoiesis. Next, we determined the copy number per cell for each miR in each of the examined stem and progenitor cell types. As data is emerging indicating that miRs function robustly mainly when they are expressed above a certain threshold (~100 copies per cell), our database provides a resource for determining which miRs are expressed at a potentially functional level in each cell type. Finally, we combine our miR expression map with matched mRNA expression data and external prediction algorithms, using a Bayesian modeling approach to create a global landscape of predicted miR-mRNA interactions within each of these hematopoietic stem and progenitor cell subsets. This approach identifies several interaction networks comprising a “stemness” signature in the most primitive hematopoietic stem cell (HSC) populations, as well as “myeloid” patterns associated with two branches of myeloid development. Six populations of mouse hematopoietic stem and progenitors have been analyzed (LT-HSC, ST-HSC, MPP, CMP, GMP, MEP). 2-3 replicates are included for each sample.
Project description:Analysis of gene expression profiles is an attractive method for discovering how animals respond to environmental challenges in nature. Compared to low altitudes, high altitudes are characterized by reduced partial pressures of oxygen (hypoxia) and cooler ambient temperatures To better understand how mammals cope with high altitudes, we trapped wild house mice (Mus musculus domesticus) from 3 populations in La Paz, Bolivia (3000 - 3600 m) and 3 populations in Lima, Peru (0 – 200 m). Affymetrix GeneChip® Mouse Genome 430 2.0 Arrays were use to measure mRNA abundance in the livers of these mice.
Project description:We used the resolving power of single-cell transcriptional profiling to molecularly characterize the mouse adipose stem and progenitor cell-enriched, subcutaneous adipose stromal vascular fraction. We molecularly assessed CD45- CD31- SVF cells using the 10x Genomics Chromium (10x) platform.
Project description:The development and function of stem and progenitor cells that produce blood cells are vital in physiology. GATA2 mutations cause immunodeficiency, myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML). GATA-2 physiological activities necessitate that it be strictly regulated and cell type-specific enhancers fulfill this role. The +9.5 intronic enhancer harbors multiple conserved cis-elements, and germline mutations of these cis-elements are pathogenic in humans. Since mechanisms underlying how GATA2 enhancer disease mutations impact hematopoiesis and pathology are unclear, we generated mouse models of the enhancer mutations. While a multi-motif mutant was embryonic lethal, a single-nucleotide Ets motif mutant was viable and steady-state hematopoiesis was normal. However, the Ets motif mutation abrogated stem/progenitor cell regeneration following stress. These results reveal a new mechanism in human genetics in which a disease mutation inactivates enhancer regenerative activity, while sparing developmental activity. Mutational sensitization to stress that instigates hematopoietic failure constitutes a paradigm for GATA-2-dependent pathogenesis.