Project description:De novo copy number variations in cloned dogs from the same nuclear donor In this study, we aimed to identify de novo post-cloning CNV events and estimated the rate of CNV mosaicism in cloned dogs with the identical genetic background.
Project description:De novo copy number variations in cloned dogs from the same nuclear donor In this study, we aimed to identify de novo post-cloning CNV events and estimated the rate of CNV mosaicism in cloned dogs with the identical genetic background.
Project description:De novo copy number variations in cloned dogs from the same nuclear donor In this study, we aimed to identify de novo post-cloning CNV events and estimated the rate of CNV mosaicism in cloned dogs with the identical genetic background. We analyzed CNVs in seven cloned dogs using the nuclear donor genome as reference by array-CGH
Project description:De novo copy number variations in cloned dogs from the same nuclear donor In this study, we aimed to identify de novo post-cloning CNV events and estimated the rate of CNV mosaicism in cloned dogs with the identical genetic background. We analyzed CNVs in seven cloned dogs using the nuclear donor genome as reference by array-CGH
Project description:The aim of this work was to identify copy number variations (CNVs) by high-resolution array comparative genomic hybridization (aCGH) on 50 dogs with newly diagnosed DLBCL.
Project description:Autism spectrum disorder (ASD) and mental retardation (MR) represent clinically distinct neurodevelopmental disorders with a complex genetic etiology. Using microarrays we identified de novo copy number variations in the SHANK2 synaptic scaffolding gene in two unrelated ASD and MR patients; DNA sequencing of SHANK2 revealed additional variants including a de novo nonsense mutation and 7 rare inherited changes. Our findings further link common genes between ASD and intellectual disability.
Project description:We have identified de novo copy number variations (CNVs) generated in ageing bulls. Blood samples from eight bulls were collected and SNP arrayed in a prospective design over 30 months allowing us to differentiate de novo CNVs from constant CNVs that are present throughout the sampling period. Quite remarkably, the total number of CNVs doubled over the 30-month period, as we observed an almost equal number of de novo and constant CNVs (107 vs. 111 or 49% vs. 51%, respectively). Twice as many de novo CNVs emerged during the second half of the sampling schedule as in the first part. It suggests a dynamic generation of de novo CNVs in the bovine genome that becomes more frequent, as the age of the animal progresses. In a second experiment de novo CNVs were detected through in vitro ageing of bovine fibroblasts by sampling passage #5, #15 and #25. De novo CNVs also became more frequent, but the proportion of them was only ~25% of the total number of CNVs (21 vs. 64). Temporal generation of de novo CNVs resulted in increasing genome coverage. Genes and quantitative trait loci overlapping de novo CNVs were further investigated for ageing related functions.
Project description:Ongoing studies using genomic microarrays and next-generation sequencing have demonstrated that the genetic contributions to cardiovascular diseases have been significantly ignored in the past. The aim of this study was to identify rare copy number variants in individuals with congenital pulmonary atresia (PA). Based on the hypothesis that rare structural variants encompassing key genes play an important role in heart development in PA patients, we performed high-resolution genome-wide microarrays for copy number variations (CNVs) in 82 PA patient-parent trios and 189 controls with an Illumina SNP array platform. CNVs were identified in 17/82 patients (20.7%), and eight of these CNVs (9.8%) are considered potentially pathogenic. Five de novo CNVs occurred at two known congenital heart disease (CHD) loci (16p13.1 and 22q11.2). Two de novo CNVs that may affect folate and vitamin B12 metabolism were identified for the first time. A de novo 1-Mb deletion at 17p13.2 may represent a rare genomic disorder that involves mild intellectual disability and associated facial features. high-resolution genome-wide microarrays for copy number variations (CNVs) in 82 PA patient-parent trios and 189 controls with an Illumina SNP array platform. Only 21 samples with potentially pathogenic CNVs are included in this records