Project description:We are using ACI and BN rats, which differ markedly in their susceptibility to 17beta-Estradiol (E2)-induced mammary cancer, to identify genetic variants and environmental factors that determine mammary cancer susceptibility. The objective of this study was to characterize the cellular and molecular responses to E2 in the mammary glands of ACI and BN rats to identify qualitative and quantitative phenotypes that associate with and/or may confer differences in susceptibility to mammary cancer. Female ACI and BN rats were treated with E2 for 1, 3 or 12 weeks and cell proliferation, apoptosis, differentiation and gene expression were evaluated. The luminal epithelium of ACI rats exhibited a rapid and sustained proliferative response to E2. By contrast, the proliferative response exhibited by the mammary epithelium of BN rats was restrained and transitory. Moreover, the epithelium of BN rats appeared to undergo differentiation in response to E2, as evidenced by production of milk proteins as well as luminal ectasia and associated changes in the extracellular matrix (ECM). Marked differences in expression of genes that encode proteins with well-defined roles in mammary gland development (Pgr, Wnt4, Tnfsf11, Prlr, Stat5a, Areg, Gata3), differentiation and milk production (Lcn2, Spp1), regulation of extracellular environment (Mmp7, Mmp9), and cell-cell or cell-ECM interactions (Cd44, Cd24, Cd52) were observed. We propose that these cellular and molecular phenotypes are heritable and may underlie, at least in part, the differences in mammary cancer susceptibility exhibited by ACI and BN rats. Two groups of 17beta-estradiol treated female rats were compared. Five ACI and five BN rats were treated with 17beta-estradiol for 12 weeks. Total RNA was isolated from the mammary glands of these animals, labeled, and hybridized to Affymetrix Rat Genome 230 2.0 Arrays (Affymetrix Inc.). Significantly differentially expressed genes were found between these groups.
Project description:We are using the ACI rat model of 17beta-estradiol induced mammary cancer to define the mechanisms through which estrogens contribute to breast cancer development; identify and functionally characterize the genetic variants that determine susceptibility; and define the hormone-gene-environment interactions that influence development of mammary cancer in this physiologically relevant rat model. Female ACI rats are uniquely susceptible to development of mammary cancer when treated continuously with physiologic levels of 17beta-estradiol. Induction of mammary cancer in female ACI rats occurs through a mechanism that is largely dependent upon estrogen receptor-alpha. Interval mapping analyses of progeny generated in intercrosses between susceptible ACI rats and resistant Brown Norway (BN) rats revealed seven quantitative trait loci (QTL), designated Emca3 (Estrogen-induced mammary cancer) through Emca9, each of which harbors one or more genetic determinants of mammary cancer susceptibility. Genes that reside within Emca8 on RNO5 and were differentially expressed between 17beta-estradiol treated ACI and ACI.BN-Emca8 congenic rats were identified as Emca8 candidates.
Project description:We are using the ACI rat model of 17beta-estradiol induced mammary cancer to define the mechanisms through which estrogens contribute to breast cancer development; identify and functionally characterize the genetic variants that determine susceptibility; and define the hormone-gene-environment interactions that influence development of mammary cancer in this physiologically relevant rat model. Female ACI rats are uniquely susceptible to development of mammary cancer when treated continuously with physiologic levels of 17beta-estradiol. Induction of mammary cancer in female ACI rats occurs through a mechanism that is largely dependent upon estrogen receptor-alpha. Interval mapping analyses of progeny generated in intercrosses between susceptible ACI rats and resistant Brown Norway (BN) rats revealed seven quantitative trait loci (QTL), designated Emca3 (Estrogen-induced mammary cancer) through Emca9, each of which harbors one or more genetic determinants of mammary cancer susceptibility. Genes that reside within Emca8 on RNO5 and were differentially expressed between 17beta-estradiol treated ACI and ACI.BN-Emca8 congenic rats were identified as Emca8 candidates. Two groups of 17beta-estradiol treated female rats were compared. Five ACI and five BN.ACI-Emca8 rats were treated with 17beta-estradiol for 12 weeks. Total RNA was isolated from the mammary glands of these animals, labeled, and hybridized to Affymetrix Rat Genome 230 2.0 Arrays (Affymetrix Inc.). Significantly differentially expressed genes were found between these groups.
Project description:We are using ACI and BN rats, which differ markedly in their susceptibility to 17beta-Estradiol (E2)-induced mammary cancer, to identify genetic variants and environmental factors that determine mammary cancer susceptibility. The objective of this study was to characterize the cellular and molecular responses to E2 in the mammary glands of ACI and BN rats to identify qualitative and quantitative phenotypes that associate with and/or may confer differences in susceptibility to mammary cancer. Female ACI and BN rats were treated with E2 for 1, 3 or 12 weeks and cell proliferation, apoptosis, differentiation and gene expression were evaluated. The luminal epithelium of ACI rats exhibited a rapid and sustained proliferative response to E2. By contrast, the proliferative response exhibited by the mammary epithelium of BN rats was restrained and transitory. Moreover, the epithelium of BN rats appeared to undergo differentiation in response to E2, as evidenced by production of milk proteins as well as luminal ectasia and associated changes in the extracellular matrix (ECM). Marked differences in expression of genes that encode proteins with well-defined roles in mammary gland development (Pgr, Wnt4, Tnfsf11, Prlr, Stat5a, Areg, Gata3), differentiation and milk production (Lcn2, Spp1), regulation of extracellular environment (Mmp7, Mmp9), and cell-cell or cell-ECM interactions (Cd44, Cd24, Cd52) were observed. We propose that these cellular and molecular phenotypes are heritable and may underlie, at least in part, the differences in mammary cancer susceptibility exhibited by ACI and BN rats.
Project description:Estrogen induce organ-specific cell proliferation and development in female reproductive organs, though the reproductive differentiation, sex maturation, implantation and lactation. However, the mechanism of organ-specific estrogen responsive genes is unknown. Thus, we examined early estrogen responsive genes in mouse uterus, vagina and mammary gland. Keywords: organ specificity 70-day-old ovariectomized mice (C57BL/6J)(n=4) were treated with 17beta-estradiol (5micro g/kg) or sesame oil. Whole uterus (Ut), vagina (Vg) and mammary gland (Mg) were sacrificed 6h after the injection.
Project description:PURPOSE: The hypothesis tested in the study was that the effect of estrogen and progesterone on the lacrimal gland is mediated through specific receptors and that hormonal effects involve the regulation of gene expression and protein synthesis. METHODS: Lacrimal glands were collected from young adult, ovariectomized mice, that were treated with 17beta-estradiol, progesterone, 17beta-estradiol plus progesterone or vehicle for 2 weeks. Glands were pooled according to treatment, processed for the isolation of RNA, and evaluated for differentially expressed mRNAs by using gene microarrays. Bioarray data were analyzed with sophisticated bioinformatics and statistical programs. The expression of selected genes was verified by using gene chips and quantitative real-time PCR methods. RESULTS: The results demonstrate that 17beta-estradiol, progesterone, or both hormones together significantly influences the expression of hundreds of genes in the mouse lacrimal gland. Sex steroid treatment led to numerous alterations in gene activities related to transcriptional control, cell growth and/or maintenance, cell communication, signal transduction, enzyme catalysis, immune expression, and the binding and metabolism of nucleic acids and proteins. A number of the 17beta-estradiol, progesterone or 17beta-estradiol plus progesterone effects on gene expression were similar, but most were unique to each treatment. Of particular interest was the finding that these hormones seem to contribute little to the known sex-related differences in gene expression of the lacrimal gland. CONCLUSIONS: These results support the hypothesis that estrogen's and progesterone's action on the lacrimal gland involves the regulation of numerous genes. However, these hormone effects do not appear to represent a major factor underlying the sexual dimorphism of gene expression in lacrimal tissue. Keywords: Placeco vs Hormone Treatment
Project description:Both ovarian and pituitary hormones are required for the pubertal development of the mouse mammary gland. Estradiol directs ductal elongation and branching within the adipose stroma of the adolescent mouse mammary gland, while progesterone leads to tertiary branching and alveolar development. The purpose of this investigation was to identify the estrogen-responsive genes that are associated with estrogen-stimulated ductal elongation and branching in the mouse mammary gland in the absence of other ovarian hormones. We also wanted to determine if estrogen-responsive gene regulation at early stages of ductal elongation (ie. when ductal growth was minimal) was similar to those regulated after significant ductal elongation had occurred. To identify estrogen-regulated genes, ovariectomized prepubertal mice were exposed to 17beta-estradiol for four weeks, and mammary gland global gene expression analyzed by microarray analysis at various points during this time course. We determined that while many genes are regulated in all weeks of treatment, there remained a subset of genes that was uniquely regulated at each time-point. This observation was reflected in the biological functions of these genes; some categories were represented in all weeks of treatment while others were specific to only certain time-points. We have also identified estradiol-responsive genes in the mouse mammary gland that co-express with Estrogen Receptor alpha in human breast cancer, which may represent novel effectors of estrogen action and/or biomarkers for the progression of estrogen-dependent cancers and other estrogen-driven diseases.
Project description:Nutritional factors may have a role on the susceptibility of the mammary gland malignant transformation. Here we study the role dietary lipids on development and gene expression profile of Sprague-Dawley rat mammary gland
Project description:Estrogen receptor α (ERα) is the major driving transcription factor in normal mammary gland development as well as breast cancer initiation and progression.However,the fundamental mechanisms,including global cistromic and genomic transcriptional responses that are required to elicit mammary epithelial cell proliferation in response to estradiol, have not been elucidated. We used RNA-seq analysis to identify global gene expression signatures that are acutely regulated by estroegn receptors in the mouse mammary gland after acute estradiol treatment.