Project description:The mosquito Anopheles gambiae uses its innate immune system to control bacterial and Plasmodium infection of its midgut tissue. The activation of potent IMD pathway-mediated anti-Plasmodium falciparum defenses is dependent on the presence of the midgut microbiota, which activate this defense system upon parasite infection through a peptidoglycan recognition protein, PGRPLC. We employed transcriptomic and reverse genetic analyses to compare the P. falciparum infection-responsive transcriptomes of septic and aseptic mosquitoes and to determine whether bacteria-independent anti-Plasmodium defenses exist. To examine the impact of P. falciparum infection on the mosquito midgut and carcass transcriptomes in the presence or absence of midgut bacteria, we used A. gambiae whole genome microarrays to compare the mRNA abundance of P. falciparum-infected and -naïve mosquitoes of antibiotic- and non-antibiotic treated cohorts. P. falciparum infection induced changes in the abundance of as many as 2,183 and 2,429 transcripts in whole mosquitoes belonging to a variety of functional groups in aseptic and septic mosquitoes. Ultimately, we were interested in identifying the genes involved in bacteria-independent anti-Plasmodium responses, and therefore we focused on transcripts displaying increased abundance in the parasite-infected aseptic midguts, placing a particular emphasis on those with predicted immune functions. Because of the central role of serine protease cascades in regulating insect immune defenses, we focused the remainder of our analysis on a clip-domain serine protease C2 (CLIPC2, AGAP004317) and a serine protease inhibitor 7 (SRPN7, AGAP007693) that were specifically upregulated in the parasite-infected, aseptic mosquito midgut. We showed that SRPN7 negatively and CLIPC2 positively regulate the anti-Plasmodium defense, independently of the midgut-associated bacteria. Co-silencing assays suggested that these two genes may function together in a signaling cascade. Neither gene was regulated, nor modulated, by infection with the rodent malaria parasite Plasmodium berghei, suggesting that SRPN7 and CLIPC2 are components of a defense system with preferential activity towards P. falciparum. Further analysis using RNA interference determined that these genes do not regulate the anti-Plasmodium defense mediated by the IMD pathway, and both factors act as agonists of the endogenous midgut microbiota, further demonstrating the lack of functional relatedness between these genes and the bacteria-dependent activation of the IMD pathway. This is the first study confirming the existence of a bacteria-independent, anti-P. falciparum defense. Aseptic and septic midguts and carcasses from P. falciparum-infected A. gambiae vs aseptic and septic midguts and carcasses from uninfected, blood-fed A. gambiae. 3 biological replicates and 1 pseudo-replicate per each array.
Project description:The mosquito Anopheles gambiae uses its innate immune system to control bacterial and Plasmodium infection of its midgut tissue. The activation of potent IMD pathway-mediated anti-Plasmodium falciparum defenses is dependent on the presence of the midgut microbiota, which activate this defense system upon parasite infection through a peptidoglycan recognition protein, PGRPLC. We employed transcriptomic and reverse genetic analyses to compare the P. falciparum infection-responsive transcriptomes of septic and aseptic mosquitoes and to determine whether bacteria-independent anti-Plasmodium defenses exist. To examine the impact of P. falciparum infection on the mosquito midgut and carcass transcriptomes in the presence or absence of midgut bacteria, we used A. gambiae whole genome microarrays to compare the mRNA abundance of P. falciparum-infected and -naïve mosquitoes of antibiotic- and non-antibiotic treated cohorts. P. falciparum infection induced changes in the abundance of as many as 2,183 and 2,429 transcripts in whole mosquitoes belonging to a variety of functional groups in aseptic and septic mosquitoes. Ultimately, we were interested in identifying the genes involved in bacteria-independent anti-Plasmodium responses, and therefore we focused on transcripts displaying increased abundance in the parasite-infected aseptic midguts, placing a particular emphasis on those with predicted immune functions. Because of the central role of serine protease cascades in regulating insect immune defenses, we focused the remainder of our analysis on a clip-domain serine protease C2 (CLIPC2, AGAP004317) and a serine protease inhibitor 7 (SRPN7, AGAP007693) that were specifically upregulated in the parasite-infected, aseptic mosquito midgut. We showed that SRPN7 negatively and CLIPC2 positively regulate the anti-Plasmodium defense, independently of the midgut-associated bacteria. Co-silencing assays suggested that these two genes may function together in a signaling cascade. Neither gene was regulated, nor modulated, by infection with the rodent malaria parasite Plasmodium berghei, suggesting that SRPN7 and CLIPC2 are components of a defense system with preferential activity towards P. falciparum. Further analysis using RNA interference determined that these genes do not regulate the anti-Plasmodium defense mediated by the IMD pathway, and both factors act as agonists of the endogenous midgut microbiota, further demonstrating the lack of functional relatedness between these genes and the bacteria-dependent activation of the IMD pathway. This is the first study confirming the existence of a bacteria-independent, anti-P. falciparum defense.
Project description:Transmission of malaria is dependent on the successful completion of the Plasmodium lifecycle in the Anopheles vector. Major obstacles are encountered in the midgut tissue, where most parasites are killed by the mosquito’s immune system. In the present study, DNA microarray analyses have been used to compare Anopheles gambiae responses to invasion of the midgut epithelium by the ookinete stage of the human pathogen Plasmodium falciparum and the rodent experimental model pathogen P. berghei. Invasion by P. berghei had a more profound impact on the mosquito transcriptome, including a variety of functional gene classes, while P. falciparum elicited a broader immune response at the gene transcript level. Ingestion of human malaria-infected blood lacking invasive ookinetes also induced a variety of immune genes, including several anti-Plasmodium factors. Keywords: Anopheles gambiae, Plasmodium falciparum, ookinete, invasion, innate immunity
Project description:Transmission of malaria is dependent on the successful completion of the Plasmodium lifecycle in the Anopheles vector. Major obstacles are encountered in the midgut tissue, where most parasites are killed by the mosquito’s immune system. In the present study, DNA microarray analyses have been used to compare Anopheles gambiae responses to invasion of the midgut epithelium by the ookinete stage of the human pathogen Plasmodium falciparum and the rodent experimental model pathogen P. berghei. Invasion by P. berghei had a more profound impact on the mosquito transcriptome, including a variety of functional gene classes, while P. falciparum elicited a broader immune response at the gene transcript level. Ingestion of human malaria-infected blood lacking invasive ookinetes also induced a variety of immune genes, including several anti-Plasmodium factors. By comparing gene expression patterns between carcassess or guts of mosquitoes that fed on a P. falciparum or P. berghei wt and mosquitoes that fed on invasion incapable strains we gain information on the A. gambiae transcriptional responses to the invading ookinete at 24 hours after feeding. By comparing gene expression patterns between carcassess or guts of mosquitoes that fed on a P. falciparum ookinete invasion incapable strain and mosquitoes that fed on non-infected blood we gain information on the A. gambiae transcriptional responses to malaria infected blood in absence of ookinete invasion at 24 hours after feeding. By comparing gene expression patterns between mosquitoes at 4 hours after being injected with either E. coli or S. aureus and mosquitoes injected with sterile PBS we gain information on the mosquito's transcriptional response to these bacterial challenges.
Project description:Anopheles gambiae mosquitoes transmit the human malaria parasite Plasmodium falciparum, which causes the majority of fatal malaria cases worldwide. The hematophagous life style defines the mosquito reproductive biology and is exploited by P. falciparum for its own sexual reproduction and transmission. The two main phases of the mosquito reproductive cycle, pre-vitellogenic (PV) and post-blood meal (PBM) shape its capacity to transmit malaria. Transition between these phases is tightly coordinated to ensure homeostasis between mosquito tissues and successful reproduction. One layer of control is provided by microRNAs, well-known regulators of blood meal digestion and egg development in mosquitoes. Here, we report a global overview of tissue-specific miRNA expression during the PV and PBM phases and identify miRNAs regulated during PV to PBM transition. The observed coordinated changes in the expression levels of a set of miRNAs in the energy-storing tissues suggest a role in the regulation of blood meal-induced metabolic changes.
Project description:Proteomic analysis of Anopheles gambiae brain tissue after in-gel trypsin digestion. To gain insights into neurobiology of the Anopheles gambiae mosquito, we carried out a proteomic analysis of its brain using a comprehensive proteomic approach.
Project description:Mosquitoes possess an innate immune system that is capable of limiting infection by a variety of pathogens, including the Plasmodium spp. parasites responsible for human malaria. The Anopheles immune deficiency (IMD) innate immune signaling pathway confers resistance to Plasmodium falciparum. While some previously identified Anopheles anti-Plasmodium effectors are regulated through signaling by Rel2, the transcription factor of the IMD pathway, many components of this defense system remain uncharacterized. To begin to better understand the regulation of immune effector proteins by the IMD pathway, we used oligonucleotide microarrays and iTRAQ to analyze differences in mRNA and protein expression, respectively, between transgenic An. stephensi mosquitoes exhibiting blood meal-inducible overexpression of an active recombinant Rel2 and their wild-type conspecifics. Numerous genes were differentially regulated at both the mRNA and protein levels following induction of Rel2. While multiple immune genes were up-regulated, a majority of the differentially expressed genes have no known immune function in mosquitoes. Identified sequences were assigned putative functions and gene ontology (GO) terms based on homology to previously annotated A. gambiae gene sequences. Selected up-regulated genes from multiple GO categories were tested for both anti-Plasmodium and anti-bacterial action using RNA interference (RNAi). Based on our experimental findings, we conclude that increased expression of the IMD immune pathway-controlled transcription factor Rel2 affects the expression of numerous genes with diverse functions, suggesting a broader physiological impact of immune activation and possible functional versatility of Rel2. Our study has identified multiple novel anti-Plasmodium effectors.
Project description:The transcriptional profile of four tissues for the multi insecticide Anopheles gambiae (Tiassale) and lab susceptible Anopheles gambiae strain N'Gousso. The malpighian tubules, abodmen integument (containing the fat body epidermal, neuronal, muscle and oenocyte cells), midgut and remaining structures were dissected and compared two ways: (i) each body part against the corresponding whole organism (ii) resistant against corresponding susceptible body parts.