ABSTRACT: Validation of a genomics-based hypothetical adverse outcome pathway: 2,4-dinitrotoluene perturbs PPAR signaling impairing energy metabolism and decreasing exercise endurance
Project description:2,4-dinitrotoluene (2,4-DNT), a nitroaromatic used in industrial and explosive manufacturing processes, is known to contaminate artillery ranges, demilitarization areas and munitions manufacturing facilities. Previous transcriptomic and lipidomic studies identified energy metabolism as a principle biochemical process affected by 2,4-DNT where up-stream effects on PPAR? signaling were hypothesized as themolecular initiating event for these effects. Here, the validity of this hypothetical adverse outcome pathway (AOP) was assessed by testing the hypothesis that 2,4-DNT-induced perturbations in PPAR? signaling and resultant downstream deficits in energy metabolism, especially from lipids, would result in organism-level impacts on exercise endurance. PPAR? knock-out (-/-) and wild-type (WT) mice were exposed for 14 days to vehicle or 2,4-DNT at a dose (134 mg/kg/day) that did not exhibit overt systemic toxicity. Mice performed an exercise challenge (forced swim) 1 day after the last dose. 2,4-DNT decreased swim times in WT and PPAR? (-/-) mice, but the effect was significantly less in PPAR? (-/-) mice indicating the critical of PPAR? in mediating 2,4-DNT-induced energy metabolism deficits. 2,4-DNT caused down-regulation of transcripts involved in fatty acid metabolism, gluconeogenesis, triacylglycerol catabolism, and the pentose phosphate pathway, and 2,4-DNT treated wild-type mice had decreased serum trigylcerides and increased serum glucose versus 2,4-DNT treated PPAR? (-/-) mice. Our results support the hypothesis that 2,4-DNT perturbs PPAR? signaling as a molecular initiating event therefore impacting energy metabolism, especially lipid metabolism, producing reduced exercise endurance in mice. RNA was isolated from liver tissue of vehicle or 2,4-DNT treated wild-type or PPAR? (-/-) mice (n=6) and RT-PCR performed to analyze genes involved in fatty acid metabolism
Project description:2,4-dinitrotoluene (2,4-DNT), a nitroaromatic used in industrial and explosive manufacturing processes, is known to contaminate artillery ranges, demilitarization areas and munitions manufacturing facilities. Previous transcriptomic and lipidomic studies identified energy metabolism as a principle biochemical process affected by 2,4-DNT where up-stream effects on PPARα signaling were hypothesized as themolecular initiating event for these effects. Here, the validity of this hypothetical adverse outcome pathway (AOP) was assessed by testing the hypothesis that 2,4-DNT-induced perturbations in PPARα signaling and resultant downstream deficits in energy metabolism, especially from lipids, would result in organism-level impacts on exercise endurance. PPARα knock-out (-/-) and wild-type (WT) mice were exposed for 14 days to vehicle or 2,4-DNT at a dose (134 mg/kg/day) that did not exhibit overt systemic toxicity. Mice performed an exercise challenge (forced swim) 1 day after the last dose. 2,4-DNT decreased swim times in WT and PPARα (-/-) mice, but the effect was significantly less in PPARα (-/-) mice indicating the critical of PPARα in mediating 2,4-DNT-induced energy metabolism deficits. 2,4-DNT caused down-regulation of transcripts involved in fatty acid metabolism, gluconeogenesis, triacylglycerol catabolism, and the pentose phosphate pathway, and 2,4-DNT treated wild-type mice had decreased serum trigylcerides and increased serum glucose versus 2,4-DNT treated PPARα (-/-) mice. Our results support the hypothesis that 2,4-DNT perturbs PPARα signaling as a molecular initiating event therefore impacting energy metabolism, especially lipid metabolism, producing reduced exercise endurance in mice. RNA was isolated from liver tissue of vehicle or 2,4-DNT treated wild-type or PPARα (-/-) mice (n=6) and RT-PCR performed to analyze genes involved in fatty acid metabolism
Project description:2,4-dinitrotoluene (2,4-DNT), a nitroaromatic used in industrial and explosive manufacturing processes, is known to contaminate artillery ranges, demilitarization areas and munitions manufacturing facilities. Previous transcriptomic and lipidomic studies identified energy metabolism as a principle biochemical process affected by 2,4-DNT where up-stream effects on PPARα signaling were hypothesized as themolecular initiating event for these effects. Here, the validity of this hypothetical adverse outcome pathway (AOP) was assessed by testing the hypothesis that 2,4-DNT-induced perturbations in PPARα signaling and resultant downstream deficits in energy metabolism, especially from lipids, would result in organism-level impacts on exercise endurance. PPARα knock-out (-/-) and wild-type (WT) mice were exposed for 14 days to vehicle or 2,4-DNT at a dose (134 mg/kg/day) that did not exhibit overt systemic toxicity. Mice performed an exercise challenge (forced swim) 1 day after the last dose. 2,4-DNT decreased swim times in WT and PPARα (-/-) mice, but the effect was significantly less in PPARα (-/-) mice indicating the critical of PPARα in mediating 2,4-DNT-induced energy metabolism deficits. 2,4-DNT caused down-regulation of transcripts involved in fatty acid metabolism, gluconeogenesis, triacylglycerol catabolism, and the pentose phosphate pathway, and 2,4-DNT treated wild-type mice had decreased serum trigylcerides and increased serum glucose versus 2,4-DNT treated PPARα (-/-) mice. Our results support the hypothesis that 2,4-DNT perturbs PPARα signaling as a molecular initiating event therefore impacting energy metabolism, especially lipid metabolism, producing reduced exercise endurance in mice. RNA was isolated from liver tissue of vehicle or 2,4-DNT treated wild-type or PPARα (-/-) mice (n=6) and RT-PCR performed to analyze genes involved in fatty acid metabolism
Project description:2,4-dinitrotoluene (2,4-DNT), a nitroaromatic used in industrial and explosive manufacturing processes, is known to contaminate artillery ranges, demilitarization areas and munitions manufacturing facilities. Previous transcriptomic and lipidomic studies identified energy metabolism as a principle biochemical process affected by 2,4-DNT where up-stream effects on PPARα signaling were hypothesized as themolecular initiating event for these effects. Here, the validity of this hypothetical adverse outcome pathway (AOP) was assessed by testing the hypothesis that 2,4-DNT-induced perturbations in PPARα signaling and resultant downstream deficits in energy metabolism, especially from lipids, would result in organism-level impacts on exercise endurance. PPARα knock-out (-/-) and wild-type (WT) mice were exposed for 14 days to vehicle or 2,4-DNT at a dose (134 mg/kg/day) that did not exhibit overt systemic toxicity. Mice performed an exercise challenge (forced swim) 1 day after the last dose. 2,4-DNT decreased swim times in WT and PPARα (-/-) mice, but the effect was significantly less in PPARα (-/-) mice indicating the critical of PPARα in mediating 2,4-DNT-induced energy metabolism deficits. 2,4-DNT caused down-regulation of transcripts involved in fatty acid metabolism, gluconeogenesis, triacylglycerol catabolism, and the pentose phosphate pathway, and 2,4-DNT treated wild-type mice had decreased serum trigylcerides and increased serum glucose versus 2,4-DNT treated PPARα (-/-) mice. Our results support the hypothesis that 2,4-DNT perturbs PPARα signaling as a molecular initiating event therefore impacting energy metabolism, especially lipid metabolism, producing reduced exercise endurance in mice.
Project description:2,4-dinitrotoluene (2,4-DNT), a nitroaromatic used in industrial and explosive manufacturing processes, is known to contaminate artillery ranges, demilitarization areas and munitions manufacturing facilities. Previous transcriptomic and lipidomic studies identified energy metabolism as a principle biochemical process affected by 2,4-DNT where up-stream effects on PPARα signaling were hypothesized as themolecular initiating event for these effects. Here, the validity of this hypothetical adverse outcome pathway (AOP) was assessed by testing the hypothesis that 2,4-DNT-induced perturbations in PPARα signaling and resultant downstream deficits in energy metabolism, especially from lipids, would result in organism-level impacts on exercise endurance. PPARα knock-out (-/-) and wild-type (WT) mice were exposed for 14 days to vehicle or 2,4-DNT at a dose (134 mg/kg/day) that did not exhibit overt systemic toxicity. Mice performed an exercise challenge (forced swim) 1 day after the last dose. 2,4-DNT decreased swim times in WT and PPARα (-/-) mice, but the effect was significantly less in PPARα (-/-) mice indicating the critical of PPARα in mediating 2,4-DNT-induced energy metabolism deficits. 2,4-DNT caused down-regulation of transcripts involved in fatty acid metabolism, gluconeogenesis, triacylglycerol catabolism, and the pentose phosphate pathway, and 2,4-DNT treated wild-type mice had decreased serum trigylcerides and increased serum glucose versus 2,4-DNT treated PPARα (-/-) mice. Our results support the hypothesis that 2,4-DNT perturbs PPARα signaling as a molecular initiating event therefore impacting energy metabolism, especially lipid metabolism, producing reduced exercise endurance in mice.
Project description:2,4-dinitrotoluene (2,4-DNT), a nitroaromatic used in industrial and explosive manufacturing processes, is known to contaminate artillery ranges, demilitarization areas and munitions manufacturing facilities. Previous transcriptomic and lipidomic studies identified energy metabolism as a principle biochemical process affected by 2,4-DNT where up-stream effects on PPARα signaling were hypothesized as themolecular initiating event for these effects. Here, the validity of this hypothetical adverse outcome pathway (AOP) was assessed by testing the hypothesis that 2,4-DNT-induced perturbations in PPARα signaling and resultant downstream deficits in energy metabolism, especially from lipids, would result in organism-level impacts on exercise endurance. PPARα knock-out (-/-) and wild-type (WT) mice were exposed for 14 days to vehicle or 2,4-DNT at a dose (134 mg/kg/day) that did not exhibit overt systemic toxicity. Mice performed an exercise challenge (forced swim) 1 day after the last dose. 2,4-DNT decreased swim times in WT and PPARα (-/-) mice, but the effect was significantly less in PPARα (-/-) mice indicating the critical of PPARα in mediating 2,4-DNT-induced energy metabolism deficits. 2,4-DNT caused down-regulation of transcripts involved in fatty acid metabolism, gluconeogenesis, triacylglycerol catabolism, and the pentose phosphate pathway, and 2,4-DNT treated wild-type mice had decreased serum trigylcerides and increased serum glucose versus 2,4-DNT treated PPARα (-/-) mice. Our results support the hypothesis that 2,4-DNT perturbs PPARα signaling as a molecular initiating event therefore impacting energy metabolism, especially lipid metabolism, producing reduced exercise endurance in mice.
Project description:The use of a systems biology approach to analyze common and specific mechanisms of liver toxicity induced by munitions compounds TNT, 2,6-DNT, 2,4-DNT, 4A-DNT, and 2A-DNT The munitions compound 2,4,6-trinitrotoluene (TNT), its environmental degradation products 2-amino-4,6-dinitrotoluene (2A-DNT) and 4-amino-2,6-dinitrotoulene (4A-DNT), and two other munitions, 2,4-dinitrotoluene (2,4-DNT) and 2,4-dinitrotoluene (2,6-DNT) contaminate contaminate land, water and retired ammunitions plants. The release of these compounds to the environment is due to military activities and a series of manufacturing processes. Although toxicity has been characterized for these compounds, little is known of their mechanism of action. Here we describe to use an integrative systems biology approach including toxicology, pathology, transcriptomics, metabolomics, gene function classification, pathway analysis and gene network modeling to try to understand the mechanisms of toxicity of these compounds.
Project description:Small organisms can be used as biomonitoring tools to assess chemicals in the environment. Chemical stressors are especially hard to assess and monitor when present as complex mixtures. Here, Daphnia magna were exposed for 24 hours to five different munitions constituents 2,4,6-trinitrotoluene (TNT), 2,4-dinitrotoluene (2,4-DNT), 2,6-dinitrotoluene (2,6-DNT), trinitrobenzene (TNB), dinitrobenzene (DNB), or 1,3,5-trinitro-1,3,5-triazacyclohexane (RDX) as well as to 8 different munitions mixtures and ground water contaminated with munitions constituents. To better understand possible mixture effects, gene expression changes from all treatments were compared using high-density microarrays. While mixtures and ground water exposures had genes and gene functions in common with single chemical exposures, unique functions were also affected, which was consistent with the non-additivity of chemical effects in these mixtures.
Project description:Small organisms can be used as biomonitoring tools to assess chemicals in the environment. Chemical stressors are especially hard to assess and monitor when present as complex mixtures. Here, Daphnia magna were exposed for 24 hours to five different munitions constituents 2,4,6-trinitrotoluene (TNT), 2,4-dinitrotoluene (2,4-DNT), 2,6-dinitrotoluene (2,6-DNT), trinitrobenzene (TNB), dinitrobenzene (DNB), or 1,3,5-trinitro-1,3,5-triazacyclohexane (RDX) as well as to 8 different munitions mixtures and ground water contaminated with munitions constituents. To better understand possible mixture effects, gene expression changes from all treatments were compared using high-density microarrays. While mixtures and ground water exposures had genes and gene functions in common with single chemical exposures, unique functions were also affected, which was consistent with the non-additivity of chemical effects in these mixtures. The study consisted of three different experiments: (1) exposure to a concentration corresponding to 70% of 1/10th of the LC50 value of six individual MCs (TNT, 2,4-DNT, 2,6-DNT, DNB, TNB, RDX) and a control; (2) exposure to eight different laboratory mixtures of the previously mentioned MCs. Different combinations of MCs including four mixtures (Mixtures 5, 6, 7 and 8) representative of field collected groundwater from LAAP (Louisiana Army Ammunition Plant) were created; and (3) exposure to MC-contaminated ground water field-collected from 3 different wells (85, 108, and 141) at the LAAP. All exposures were conducted for 24h.
Project description:The nuclear receptor PPAR[gamma] is a master regulator controlling energy metabolism and cell fate in the prostate. One advanced human prostate cancer cell line PC3 was used to examine the effects of restoration of PPAR[gamma]2 action. Restoration of PPAR[gamma]2 action in PC3 cells inhibited cell proliferation and migration. PC3-PPAR[gamma]2 cDNA recombinants showed necrosis in cancer region and lymphocyte infiltration in surrounding stroma by H&E staining. They expressed low microtubules associated protein 1 light chain 3 (LC3), and high mixed lineage kinase domain-like (MLKL), CD4 and CD8 protein expression levels compare to the control by IHC staining. Gain-of-function of PPAR[gamma]2 in PC3 cells resulted in reprogramming of lipid and energy metabolism-associated signaling pathways by microarray analysis. These data are consistent with the idea that PPAR[gamma] action specific to PPAR[gamma]2, exerts a crucial tumor suppressive role on triggering autophagy and necroptosis in human prostate cancer initiation and progression.