Project description:Transcription is a major obstacle for replication fork progression and a cause of genome instability. Such instability increases in mutants with a suboptimal assembly of the nascent messenger ribonucleo-protein particle (mRNP), as THO/TREX and some heterogeneous nuclear ribonucleoproteins (hnRNPs) mutants. Here we show that yeast npl3M-bM-^HM-^F cells show genome-wide replication obstacles as determined by accumulation of the Rrm3 helicase. Such obstacles preferentially occur at long and highly expressed genes, to which Npl3 is preferentially bound in wild-type cells. ChIP-chip studies were perfomed with antibodies against Myc-tagged Npl3 protein in wild-type cells of the yeast S. Cerevisiae, as well as Flag-tagged Rrm3 protein in both wild-type and npl3M-bM-^HM-^F cells.
Project description:THO/TREX is a conserved nuclear complex that functions in mRNP biogenesis and prevents transcription-associated recombination. Whether or not it has a ubiquitous role in the genome is an open question. ChIP-chip studies reveal that the Hpr1 component of THO and the Sub2 RNA-dependent ATPase have genome wide-distributions at active ORFs in yeast. In contrast to RNAPII, evenly distributed from promoter to termination regions, THO and Sub2 are absent at promoters and distributed in a sharp 5M-bM-^@M-^YM-bM-^FM-^R3M-bM-^@M-^Y gradient. Importantly, ChIP-chips reveal an over-recruitment of Rrm3 in active genes in THO mutants that is reduced by overexpression of RNase H1. Our work establishes a genome-wide function for THO-Sub2 in transcription elongation and mRNP biogenesis that function to prevent the accumulation of transcription-mediated replication obstacles, including R-loops. ChIP-chip studies were perfomed with tagged forms of the Hpr1 component of THO (Hpr1-FLAG), the Sub2 RNA-dependent ATPase of TREX (Sub2-FLAG), the Rpb3 subunit of RNA polymerase II (Rpb3-PK) and the Rrm3 protein (Rrm3-FLAG) in the yeast S. cerevisiae.
Project description:Transcription is a major obstacle for replication fork progression and a cause of genome instability. Such instability increases in mutants with a suboptimal assembly of the nascent messenger ribonucleo-protein particle (mRNP), as THO/TREX and some heterogeneous nuclear ribonucleoproteins (hnRNPs) mutants. Here we show that yeast npl3∆ cells show genome-wide replication obstacles as determined by accumulation of the Rrm3 helicase. Such obstacles preferentially occur at long and highly expressed genes, to which Npl3 is preferentially bound in wild-type cells.
Project description:Transcription is a major contributor to genome instability.A main cause of transcription-associated instability relies on the capacity of transcription to stall replication. Such genome instability is increased in RNAPII mutants. ChIP-chips performed in asynchronous cultures showed an increase of the Rrm3 binding signal all over the genome in rpb1-1 compared to wild-type. ChIP-chip studies were perfomed with antibody against Flag-tagged Rrm3 protein in both wild-type and rpb1-1 cells.
Project description:As part of a study of establishment of silencing in Saccharomyces cerevisiae, we performed ChIP-seq on myc-tagged Sir4 in several conditions. Included in those conditions are wild-type cycling cells, cycling sir3∆ cells, and various experiments during which silencing establishment was controlled using the inducible SIR3-EBD allele. Silencing establishment experiments were performed in both wild-type and dot1∆ cells.