Project description:aCGH of control cells not subjected to PDT (Parental) and cells subjected to 5 or 10 sequential PDT treatments (5M-BM-:G and 10M-BM-:G, respectively). Three-condition experiment, cultures of SCC-13 cells not subjected to PDT (Parental) vs 5M-BM-:G and 10M-BM-:G generations of resistant cells.
Project description:Photodynamic therapy (PDT) of solid cancers comprises the administration of a photosensitizer followed by illumination of the photosensitizerreplete tumor with laser light. This induces a state of local oxidative stress, culminating in the destruction of tumor tissue and microvasculature and induction of an anti-tumor immune response. However, some tumor types, including perihilar cholangiocarcinoma, are relatively refractory to PDT, which may be attributable to the activation of survival pathways in tumor cells following PDT (i.e., activator protein 1 (AP-1)-, nuclear factor of kappa light polypeptide gene enhancer in B-cells (NF-κB)-, hypoxia-inducible factor 1-alpha (HIF-1α)-, nuclear factor (erythroid-derived 2)-like 2 (NFE2L2), and unfolded protein response-mediated pathways). To assess the activation of survival pathways after PDT, human perihilar cholangiocarcinoma (SK-ChA-1) cells were subjected to PDT with zinc phthalocyanine (ZnPC)-encapsulating liposomes. Following a 30-minute incubation with liposomes, the cells were either left untreated or treated at low (50 mW) or high (500 mW) laser power (cumulative light dose of 15 J/cm2). Cells were harvested 90 minutes post-PDT and whole genome expression analysis was performed using Illumina HumanHT-12 v4 expression beadchips. Hilar cholangiocarcinoma (SK-ChA-1) cells were incubated with PBS (control group) or 500 μM zinc phthalocyanine (ZnPC)-encapsulating liposomes (ZnPC-ITLs, final lipid concentration). After 30 minutes, cells that were incubated with ZnPC-ITLs were either kept in the dark (ITL group) or were treated with 500-mW (ITL 500) or 50-mW (ITL 50) laser light (n = 3 per group, cumulative light dose of 15 J/cm2). Ninety minutes after photodynamic therapy, total cellular RNA was isolated and gene expression levels were analyzed by using the Illumina HumanHT-12 v4 platform. The data was analyzed in the context of survival signalling and comparisons were made with the control group.
Project description:We report the application of 5-ALA ( 5-Aminolevulinic acid)-mediated photodynamic therapy on mouse brain tissue, and further explored the impact of PDT on nervous system.
Project description:We report the application of 5-ALA ( 5-Aminolevulinic acid)-mediated photodynamic therapy on mouse brain tissue, and further explored the impact of PDT on nervous system.
Project description:We report the application of Porfimer sodium-mediated photodynamic therapy on mouse brain endothelial cells, and further identified the impact of PDT on the normal vessel cells.
Project description:The study titled "Dyad system of BOAHY-BODIPY Conjugates as Novel Photo-switchable Photosensitizer for Photodynamic Therapy" investigated the photodynamic therapy (PDT) potential of a compound that switches structures (Z form to E form) under UV irradiation. The compound generates reactive oxygen species (ROS) when exposed to light, with the Z form producing more ROS than the E form, leading to higher cytotoxicity. Chemoproteomics analysis revealed more protein modifications in the Z form, indicating greater ROS-induced changes compared to the E form. This suggests that the PDT effect and photo-switching ability can significantly impact biological processes, influencing genetic modifications and highlighting its potential in unbiased biomarker discovery for PDT studies.
Project description:Photodynamic therapy (PDT) of solid cancers comprises the administration of a photosensitizer followed by illumination of the photosensitizerreplete tumor with laser light. This induces a state of local oxidative stress, culminating in the destruction of tumor tissue and microvasculature and induction of an anti-tumor immune response. However, some tumor types, including perihilar cholangiocarcinoma, are relatively refractory to PDT, which may be attributable to the activation of survival pathways in tumor cells following PDT (i.e., activator protein 1 (AP-1)-, nuclear factor of kappa light polypeptide gene enhancer in B-cells (NF-κB)-, hypoxia-inducible factor 1-alpha (HIF-1α)-, nuclear factor (erythroid-derived 2)-like 2 (NFE2L2), and unfolded protein response-mediated pathways). To assess the activation of survival pathways after PDT, human perihilar cholangiocarcinoma (SK-ChA-1) cells were subjected to PDT with zinc phthalocyanine (ZnPC)-encapsulating liposomes. Following a 30-minute incubation with liposomes, the cells were either left untreated or treated at low (50 mW) or high (500 mW) laser power (cumulative light dose of 15 J/cm2). Cells were harvested 90 minutes post-PDT and whole genome expression analysis was performed using Illumina HumanHT-12 v4 expression beadchips.
Project description:Ulcerative colitis (UC), a chronic, nonspecific inflammatory bowel disease characterized by continuous and diffuse inflammatory changes in the colonic mucosa, requires novel treatment method. Photodynamic therapy (PDT), as a promising physico-chemical treatment method, were used to treat UC rats’ model with novel photosensitizer LD4 in this paper, the treatment effect and mechanism was investigated. LD4-PDT could improve the survival rate of 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced UC model rats, decrease expression of interleukin (IL)-6, IL-1, tumor necrosis factor (TNF)-α, malondialdehyde (MDA), myeloperoxidase (MPO) and increase the expression of glutathione (GSH) and superoxide oxidase (SOD), while protecting the integrity of the intestinal epithelium. LD4-PDT treatment could rebuild the intestinal microflora composition and reprogram the colonic protein profiles in TNBS-induced rats to almost the normal state. Proteomics analysis based upon TNBS-induced UC model rats revealed that Amine oxidase copper-containing 1 (AOC1) was a potential target of LD4-PDT. Novel photosensitizer agent LD4-PDT represents an efficient treatment method for UC, and AOC1 may be a promising target.
Project description:Analysis of photodynamic therapy with hypericin of nasopharyngeal carcinoma cells CNE-2 in different time-points at gene expression level. The hypothesis tested in the present study was that HY-PDT could induce apoptosis on CNE-2 cells via intrinsic pathways. Results provide important information of the response of apoptosis, such as specific oxidative stress genes, mitochondrial related genes, cell cycle related genes, etc.