Project description:We describe a so far uncharacterized, embryonic and self-renewing Neural Plate Border Stem Cell (NBSC) population with the capacity to differentiate into central nervous and neural crest lineages. NBSCs can be obtained by neural transcription factor-mediated reprogramming (BRN2, SOX2, KLF4, and ZIC3) of human adult dermal fibroblasts and peripheral blood cells (induced Neural Plate Border Stem Cells, iNBSCs) or by directed differentiation from human induced pluripotent stem cells (NBSCs). Moreover, human (i)NBSCs share molecular and functional features with an endogenous NBSC population isolated from neural folds of E8.5 mouse embryos. Upon differentiation, iNBSCs give rise to either (1) radial glia-type stem cells, dopaminergic and serotonergic neurons, motoneurons, astrocytes, and oligodendrocytes or (2) cells from the neural crest lineage. Here we provide array-based expression data of (i)NBSCs and CNS- and neural crest progeny derived thereof. The former comprise radial glia-type stem cells, while the latter are neural crest and mesenchymal stem cell-like cells. The data provided reveal that (i)NBSCs can be directed into defined neural lineages and that iNBSCs pass through successive developmental stages. These data support the notion that it is possible to reprogram human adult cells into expandable, multipotent NBSCs that define a novel embryonic neural stem cell population in human and mouse.
Project description:We describe a so far uncharacterized, embryonic and self-renewing Neural Plate Border Stem Cell (NBSC) population with the capacity to differentiate into central nervous and neural crest lineages. NBSCs can be obtained by neural transcription factor-mediated reprogramming (BRN2, SOX2, KLF4, and ZIC3) of human adult dermal fibroblasts and peripheral blood cells (induced Neural Plate Border Stem Cells, iNBSCs) or by directed differentiation from human induced pluripotent stem cells. Moreover, human (i)NBSCs share molecular and functional features with an endogenous NBSC population isolated from neural folds of E8.5 mouse embryos. Upon differentiation, iNBSCs give rise to either (1) radial glia-type stem cells, dopaminergic and serotonergic neurons, motoneurons, astrocytes, and oligodendrocytes or (2) cells from the neural crest lineage. Here we provide array-based expression data of primary mouse Neural Plate Border Stem Cells (pNBSCs) derived from E8.5 mouse embryos and radial glia-type stem cells and neural crest progenitors derived thereof. The data provided reveal that pNBSCs can be directed into defined neural cell types of the CNS- and neural crest lineage.
Project description:We developed simple, robust, efficient, and serum-free/feeder-free induction protocol for neural crest cells from human pluripotent stem cells. To characterize the hNCCs and hNCC-derived MSCs, we performed gene expression profiling experiments.
Project description:Here we compare the transcriptional profile of neural crest cells differentiated on MS5 feeder cells (Lee et al., 2007 Nature Biotechnology) with neural crest cells differentiated in a feeder-free protocol. As controls, neuroepithelial cells (LSB) and wnt-induced neural crest cells were included.
Project description:We developed simple, robust, efficient, and serum-free/feeder-free induction protocol for neural crest cells from human pluripotent stem cells. To characterize the hNCCs and hNCC-derived MSCs, we performed gene expression profiling experiments. Comparison of gene expressions among hiPSCs, hESCs, hNCCs and hNC-MSCs
Project description:We describe a so far uncharacterized, embryonic and self-renewing Neural Plate Border Stem Cell (NBSC) population with the capacity to differentiate into central nervous and neural crest lineages. NBSCs can be obtained by neural transcription factor-mediated reprogramming (BRN2, SOX2, KLF4, and ZIC3) of human adult dermal fibroblasts and peripheral blood cells (induced Neural Plate Border Stem Cells, iNBSCs) or by directed differentiation from human induced pluripotent stem cells (NBSCs). Moreover, human (i)NBSCs share molecular and functional features with an endogenous NBSC population isolated from neural folds of E8.5 mouse embryos. Upon differentiation, iNBSCs give rise to either (1) radial glia-type stem cells, dopaminergic and serotonergic neurons, motoneurons, astrocytes, and oligodendrocytes or (2) cells from the neural crest lineage. Here we provide array-based methylation data of iNBSCs reprogrammed from adult dermal fibroblasts (ADF), iPSC-derived NBSCs and adult dermal fibroblasts. The data provided demonstrate robust changes in the methylation landscape after reprogramming of human adult dermal fibroblasts into iNBSCs.
Project description:Knowledge of cell signaling pathways that drive human neural crest differentiation into craniofacial chondrocytes is incomplete, yet essential for using stem cells to regenerate craniomaxillofacial structures. To accelerate translational progress, we developed a differentiation protocol that generated self-organizing craniofacial cartilage organoids from human embryonic stem cell-derived neural crest stem cells. Histological staining of cartilage organoids revealed tissue architecture and staining typical of elastic cartilage. Protein and post-translational modification (PTM) mass spectrometry and snRNASeq data showed that chondrocyte organoids expressed robust levels of cartilage extracellular matrix (ECM) components: many collagens, aggrecan, perlecan, proteoglycans, and elastic fibers. We identified two populations of chondroprogenitor cells, mesenchyme cells and nascent chondrocytes and the growth factors involved in paracrine signaling between them. We show that ECM components secreted by chondrocytes not only create a structurally resilient matrix that defines cartilage, but also play a pivotal autocrine cell signaling role to determine chondrocyte fate.
Project description:We describe a so far uncharacterized, embryonic and self-renewing Neural Plate Border Stem Cell (NBSC) population with the capacity to differentiate into central nervous and neural crest lineages. NBSCs can be obtained by neural transcription factor-mediated reprogramming (BRN2, SOX2, KLF4, and ZIC3) of human adult dermal fibroblasts and peripheral blood cells (induced Neural Plate Border Stem Cells, iNBSCs) or by directed differentiation from human induced pluripotent stem cells (NBSCs). Moreover, human (i)NBSCs share molecular and functional features with an endogenous NBSC population isolated from neural folds of E8.5 mouse embryos. Upon differentiation, iNBSCs give rise to either (1) radial glia-type stem cells, dopaminergic and serotonergic neurons, motoneurons, astrocytes, and oligodendrocytes or (2) cells from the neural crest lineage. Here we provide single cell RNA-sequencing data of two primary mouse Neural Plate Border Stem Cell Lines (pNBSCs). pNBSCs were single cell sorted and RNA sequencing was performed following the Smart-seq2 protocol. In sum, pNBSCs and iNBSCs share a similar regional identity, expression signature and analogous differentiation dynamics on the single-cell-level, suggesting the presence of a transient, NBSC-like progenitor during the neurulation stage of mouse and likely also human embryos.
Project description:We describe a so far uncharacterized, embryonic and self-renewing Neural Plate Border Stem Cell (NBSC) population with the capacity to differentiate into central nervous and neural crest lineages. NBSCs can be obtained by neural transcription factor-mediated reprogramming (BRN2, SOX2, KLF4 and ZIC3) of human adult dermal fibroblasts and peripheral blood cells (induced Neural Plate Border Stem Cells, iNBSCs) or by directed differentiation from human induced pluripotent stem cells (NBSCs). Moreover, human (i)NBSCs share molecular and functional features with an endogenous NBSC population isolated from neural folds of E8.5 mouse embryos. Upon differentiation, iNBSCs give rise to either (1) radial glia-type stem cells, dopaminergic and serotonergic neurons, motoneurons, astrocytes, and oligodendrocytes or (2) cells from the neural crest lineage. Here we provide single cell RNA-sequencing data of six iNBSC lines (310 cells total). iNBSCs were single-cell-sorted and RNA sequencing was performed following the Smart-seq2 protocol. This dataset further supports the notion that iNBSC cultures mainly consist of stem cells with a molecular and functional neural plate border-like identity and a minor fraction of cells that show signs of some spontaneous differentiation towards sensory neurons.
Project description:We have generated expression profiles of three different neural crest populations from human embryonic stem cells. These profiles were compared to a neuroectoderm population. We find that the neural crest populations are separable and distinct. All cell types were differentiated from human embryonic stem cells. Neural crest populations were sorted on day 12 for CD49. The neuroectoderm cells were unsorted and harvested on day 12 of differentiation.