Project description:A convergence of technological breakthroughs in the past decade has facilitated the development of rapid screening tools for biomarkers of toxicant exposure and effect. Platforms using the whole adult organism to evaluate the genome-wide response to toxicants are especially attractive. Recent work demonstrates the feasibility of this approach in vertebrates using the experimentally robust zebrafish model. In the present study, we evaluated gene expression changes in whole adult zebrafish following an acute 24 hour exposure to three metals with known human health risks. Male adult zebrafish were exposed to nickel chloride, cobalt chloride, and sodium dichromate concentrations corresponding to their respective 96 hr LC20, LC40 and LC60. Histopathology was performed on a subset of metal-exposed zebrafish to phenotypically anchor transcriptional changes associated with each metal. Comparative analysis identified subsets of differentially expressed transcripts both overlapping and unique to each metal. Application of gene ontology (GO) and transcription factor enrichment algorithms revealed a number of key biological processes perturbed by metal exposures and the master transcriptional regulators mediating gene expression changes. Metal exposures differentially activated biological processes associated with ribosome biogenesis, proteosomal degradation and p53 signaling cascades, while repressing oxygen-generating pathways associated with amino acid and lipid metabolism. Despite appreciable effects on gene regulation, nickel exposures did not induce any morphological alterations in zebrafish organs and tissues. Histopathological effects of cobalt remained confined to the olfactory system, while chromium targeted the gills, pharynx and intestinal mucosa. A number of enriched transcription factors mediate the observed gene response to metal exposure, including known targets such as p53, HIF1M-oM-^AM-! and the myc oncogene and novel regulatory factors such as XBP1, GATA6 and HNF3M-oM-^AM-". This work uses an experimentally innovative approach to capture global responses to metal exposures and provides mechanistic insights into metal toxicity mechanisms. Metal induced changes in gene expression in zebrafish were measured after 24 h exposures to each of three metals (nickel, chromium or cobalt). A total of 48 arrays were processed - 16 arrays per metal with 4 replicates for each exposure condition (control, low, mid, and high).
Project description:A convergence of technological breakthroughs in the past decade has facilitated the development of rapid screening tools for biomarkers of toxicant exposure and effect. Platforms using the whole adult organism to evaluate the genome-wide response to toxicants are especially attractive. Recent work demonstrates the feasibility of this approach in vertebrates using the experimentally robust zebrafish model. In the present study, we evaluated gene expression changes in whole adult zebrafish following an acute 24 hour exposure to three metals with known human health risks. Male adult zebrafish were exposed to nickel chloride, cobalt chloride, and sodium dichromate concentrations corresponding to their respective 96 hr LC20, LC40 and LC60. Histopathology was performed on a subset of metal-exposed zebrafish to phenotypically anchor transcriptional changes associated with each metal. Comparative analysis identified subsets of differentially expressed transcripts both overlapping and unique to each metal. Application of gene ontology (GO) and transcription factor enrichment algorithms revealed a number of key biological processes perturbed by metal exposures and the master transcriptional regulators mediating gene expression changes. Metal exposures differentially activated biological processes associated with ribosome biogenesis, proteosomal degradation and p53 signaling cascades, while repressing oxygen-generating pathways associated with amino acid and lipid metabolism. Despite appreciable effects on gene regulation, nickel exposures did not induce any morphological alterations in zebrafish organs and tissues. Histopathological effects of cobalt remained confined to the olfactory system, while chromium targeted the gills, pharynx and intestinal mucosa. A number of enriched transcription factors mediate the observed gene response to metal exposure, including known targets such as p53, HIF1 and the myc oncogene and novel regulatory factors such as XBP1, GATA6 and HNF3. This work uses an experimentally innovative approach to capture global responses to metal exposures and provides mechanistic insights into metal toxicity mechanisms.
Project description:Transcriptional impact of organophosphate and metal mixtures on olfaction: copper dominates the chlorpyrifos-induced response in adult zebrafish.
Project description:Methylmercury (MeHg) is an environmental neurotoxicant known to cause adverse effects in fish, such as locomotor abnormalities, visual deficits or teratogenesis. However, very few studies have investigated the effects of environmentally realistic MeHg exposures on the gene expression of fish embryos. Since the primary source of MeHg exposure in wild fish is through the diet, this study analyzed differential gene expression in zebrafish embryos from parents that had been subjected to environmentally relevant dietary MeHg exposures (0, 1, 3, and 10ppm) throughout their whole life cycle.
Project description:This study sought to evaluate the effects of dietary MeHg exposure on adult female yellow perch (Perca flavescens) and zebrafish (Danio rerio) reproduction by relating controlled exposures with subsequent reproductive effects. Yellow perch were used in the study for their socioeconomic and ecological importance within the Great Lakes basin, and the use of zebrafish allowed for a detailed analysis of the molecular effects of MeHg. MeHg exposures at environmentally relevant levels were done in zebrafish for a full life cycle, mimicking a realistic exposure scenario, and in adult yellow perch for twenty weeks, capturing early seasonal ovarian development. In zebrafish, several genes involved in reproductive processes were shown to be dysregulated by RNA-seq and QPCR, but no significant phenotypic or physiological changes were observed with ovarian staging, fecundity, or embryo mortality. Yellow perch did not appear to be affected by MeHg, either at a molecular level, as assessed by QPCR of eight genes in the pituitary, liver, and ovary tissue, or a physiological level, as seen with ovarian somatic index, circulating estradiol, and ovarian staging. Lack of impact in yellow perch limits the usefulness of zebrafish as a model and suggests that the reproductive sensitivity to environmentally relevant levels of MeHg differs between yellow perch and zebrafish.