Project description:To describe the protein profile in hippocampus, colon and ileum tissue’ changing after the old faeces transplants, we adopted a quantitative label free proteomics approach.
Project description:Macrophage activation must be tightly controlled to prevent overzealous responses that cause self-damage. MicroRNAs have been shown to promote classical macrophage activation by blocking concomitant anti-inflammatory signals and transcription factors, but can also place restraints on activation by preventing excessive TLR-signalling. In contrast, the microRNA profile associated with alternatively activated macrophages and their role in regulating wound-healing or anti-helminthic responses has not yet been described. Utilizing an in vivo model of alternative activation, in which adult Brugia malayi nematodes are surgically implanted in the peritoneal cavity of mice, we examined the profile of microRNA expression in these alternatively activated macrophages and compared this to alternatively activated IL-4 receptor knockout macrophages and thioglycollate elicited macrophages. Peritoneal macrophages from BALB/c wild type or IL-4 receptor knockout mice were elicited with thioglycollate or using nemtodes (peritoneal implant of Brugia malayi). The latter leads to a population of alternatively activated macrophages. Microarray analysis was used to examine the microRNA profile of WT alternatively activated macrophages (n = 4), IL-4 receptor knockout alternatively activated macrophages (n = 4), WT thioglycollate elicited macrophages (n = 3) and IL-4 receptor knockout thioglycollate elicited macrophages (n = 3).
Project description:Introgressed variants from other species can be an important source of genetic variation because they may arise rapidly, can include multiple mutations on a single haplotype, and have often been pretested by selection in the species of origin. Although introgressed alleles are generally deleterious, several studies have reported introgression as the source of adaptive alleles-including the rodenticide-resistant variant of Vkorc1 that introgressed from Mus spretus into European populations of Mus musculus domesticus. Here, we conducted bidirectional genome scans to characterize introgressed regions into one wild population of M. spretus from Spain and three wild populations of M. m. domesticus from France, Germany, and Iran. Despite the fact that these species show considerable intrinsic postzygotic reproductive isolation, introgression was observed in all individuals, including in the M. musculus reference genome (GRCm38). Mus spretus individuals had a greater proportion of introgression compared with M. m. domesticus, and within M. m. domesticus, the proportion of introgression decreased with geographic distance from the area of sympatry. Introgression was observed on all autosomes for both species, but not on the X-chromosome in M. m. domesticus, consistent with known X-linked hybrid sterility and inviability genes that have been mapped to the M. spretus X-chromosome. Tract lengths were generally short with a few outliers of up to 2.7 Mb. Interestingly, the longest introgressed tracts were in olfactory receptor regions, and introgressed tracts were significantly enriched for olfactory receptor genes in both species, suggesting that introgression may be a source of functional novelty even between species with high barriers to gene flow.
Project description:PURPOSE: To provide a detailed gene expression profile of the normal postnatal mouse cornea. METHODS: Serial analysis of gene expression (SAGE) was performed on postnatal day (PN)9 and adult mouse (6 week) total corneas. The expression of selected genes was analyzed by in situ hybridization. RESULTS: A total of 64,272 PN9 and 62,206 adult tags were sequenced. Mouse corneal transcriptomes are composed of at least 19,544 and 18,509 unique mRNAs, respectively. One third of the unique tags were expressed at both stages, whereas a third was identified exclusively in PN9 or adult corneas. Three hundred thirty-four PN9 and 339 adult tags were enriched more than fivefold over other published nonocular libraries. Abundant transcripts were associated with metabolic functions, redox activities, and barrier integrity. Three members of the Ly-6/uPAR family whose functions are unknown in the cornea constitute more than 1% of the total mRNA. Aquaporin 5, epithelial membrane protein and glutathione-S-transferase (GST) omega-1, and GST alpha-4 mRNAs were preferentially expressed in distinct corneal epithelial layers, providing new markers for stratification. More than 200 tags were differentially expressed, of which 25 mediate transcription. CONCLUSIONS: In addition to providing a detailed profile of expressed genes in the PN9 and mature mouse cornea, the present SAGE data demonstrate dynamic changes in gene expression after eye opening and provide new probes for exploring corneal epithelial cell stratification, development, and function and for exploring the intricate relationship between programmed and environmentally induced gene expression in the cornea. Keywords: other
Project description:We collected whole genome testis expression data from hybrid zone mice. We integrated GWAS mapping of testis expression traits and low testis weight to gain insight into the genetic basis of hybrid male sterility.
Project description:To compare up-regulation of genes following CpG activation, we performed microarray analysis of activated macrophages from B6 and F1(B6xMOLF) mouse strains. Cells were activated for 0, 2 and 4 hrs with 200nM of type B CpG. Levels of mRNA for many genes differened dramatically between the strains Peritoneal macrophages were elicited from pertoneal cavity of mice 3 days after thioglycollate injection. The cells were plated overnight at a density of 5 million cells per 100 mm dish and activated the next day with 200 nM CpG. Total RNA was isolated with TRIZOL followed by reverse transcrition, fragmentation and labeling accroding the manufacture's (Affymetrix) recommendations
Project description:To characterize the genetic basis of hybrid male sterility in detail, we used a systems genetics approach, integrating mapping of gene expression traits with sterility phenotypes and QTL. We measured genome-wide testis expression in 305 male F2s from a cross between wild-derived inbred strains of M. musculus musculus and M. m. domesticus. We identified several thousand cis- and trans-acting QTL contributing to expression variation (eQTL). Many trans eQTL cluster into eleven ‘hotspots,’ seven of which co-localize with QTL for sterility phenotypes identified in the cross. The number and clustering of trans eQTL - but not cis eQTL - were substantially lower when mapping was restricted to a ‘fertile’ subset of mice, providing evidence that trans eQTL hotspots are related to sterility. Functional annotation of transcripts with eQTL provides insights into the biological processes disrupted by sterility loci and guides prioritization of candidate genes. Using a conditional mapping approach, we identified eQTL dependent on interactions between loci, revealing a complex system of epistasis. Our results illuminate established patterns, including the role of the X chromosome in hybrid sterility.