Project description:Wolbachia pipientis is an intracellular symbiotic bacterium found in insects and arthropods. Wolbachia can decrease the vectorial capacity for various pathogens, such as the dengue virus, in Aedes aegypti. The purpose of this study was to determine the effect of Wolbachia (wMel strain) on the vectorial capacity of Ae. aegypti for Dirofilaria immitis. We analyzed gene expression patterns by RNA-seq in addition to the D. immitis infection phenotype in Ae. aegypti infected with and without wMel. Four Ae. aegypti strains, MGYP2.tet, MGYP2, Liverpol (LVP)-Obihiro (OB), and LVP-OB-wMel (OB-wMel) were analyzed for transcriptome comparison in Malpighian tubule at 2 days post infection. The correlation between Wolbachia infection, D. immitis infection phenotype and immune-related genes expression in Ae. aegypti was investigated.
Project description:Using microarray-based comparative genome hybridizations (mCGH), the genomic content of Wolbachia pipientis wMel from Drosophila melanogaster was compared to the Wolbachia from D. innubila (wInn), D. santomea (wSan), and three strains from D. simulans (wAu, wRi, wSim).
Project description:Globally invasive Aedes aegypti mosquitoes disseminate numerous arboviruses that impact human health. One promising method to control Ae. aegypti populations is transinfection with the intracellular bacterium Wolbachia pipientis, a symbiont that naturally infects ~40-52% of insects but is normally absent from Ae. aegypti. Transinfection of Ae. aegypti with the wMel Wolbachia strain induces cytoplasmic incompatibility (CI), allowing infected individuals to rapidly invade native populations. Further, wMel Wolbachia-infected females display refractoriness to medically relevant arboviruses. Thus, wMel Wolbachia-infected Ae. aegypti are being released in several areas to replace native populations, thereby suppressing disease transmission by this species. Wolbachia is reported to have minimal effects on Ae. aegypti fertility, but its influence on other reproductive processes is unknown. Female insects undergo several post-mating physiological and behavioral changes required for optimal fertility. Post-mating responses (PMRs) in female insects are typically elicited by receipt of male seminal fluid proteins (SFPs) transferred with sperm during mating, but can be modified by other factors, such as adult age, nutritional status, and microbiome composition. To assess how Wolbachia infection influences Ae. aegypti female PMRs, we collected wMel Wolbachia-infected Ae. aegypti from the field in Medellín, Colombia and introduced the bacterium into our laboratory strain. We found that Wolbachia influences female fecundity, fertility, and re-mating incidence. Further, we observed that Wolbachia significantly extends longevity of virgin females. Changes in female PMRs are not due to defects in sperm transfer by infected males, or sperm storage by infected females. Using proteomic methods to examine the seminal proteome of infected males, we found that Wolbachia infection has a moderate effect on SFP composition. However, we identified 125 Wolbachia proteins that are paternally transferred to females by infected males. Surprisingly, the CI factor proteins (Cifs), were not detected in the ejaculates of Wolbachia-infected males. Our findings indicate that Wolbachia infection of Ae. aegypti alters female post-mating responses, potentially influencing control programs that utilize Wolbachia-infected individuals.
Project description:<p>Viral studies of Drosophila melanogaster typically involve virus injection with a small needle, causing post-injury a wounding/wound healing response, in addition to the effects of viral infection. However, the metabolic response to the needle injury is understudied, and many viral investigations neglect potential effects of this response. Furthermore, the wMel strain of the endosymbiont bacterium Wolbachia pipientis provides anti-viral protection in Drosophila. Here we used NMR-based metabolomics to characterise the acute wounding response in Drosophila and the relationship between wound healing and the Wolbachia strain wMel. The most notable response to wounding was found on the initial day of injury and lessened with time in both uninfected and Wolbachia infected flies. Metabolic changes in injured flies revealed evidence of inflammation, Warburg-like metabolism and the melanisation immune response as a response to wounding. In addition, at five days post injury Wolbachia infected injured flies were metabolically more similar to the uninjured flies than uninfected injured flies were at the same time point, indicating a positive interaction between Wolbachia infection and wound healing. This study is the first metabolomic characterisation of the wound response in Drosophila and its findings are crucial to the metabolic interpretation of viral experiments in Drosophila in both past and future studies.</p>
Project description:Wolbachia is a vertically transmitted intracellular bacteria that infect most than 60% of insect species. The strains wMelPop and wMel were introduced in the dengue virus vector Aedes aegypti, naturally not infected by Wolbachia. Recently, it was shown that those two strains inhibit dengue virus replication into their new host, A. aegypti (Moreira et al. 2009 and Walker et al. in preparation). The aim of this project is to look at the transcriptional response of Aedes aegypti to infection with wMel and wMelPop and try to find some genes or pathway potentially involved in the viral interference.Four laboratory lines of A. aegypti were used throughout this study. The PGYP1 and Mel2 lines were generated by transinfection with wMelPop and wMel strains respectively. PGYP1.tet and Mel2tet lines were treated with the antibiotic tetracycline and cured from Wolbachia infection (McMeniman et al., 2009 and Walker et al in preparation). The Mosquitoes were reared under standard laboratory conditions (26 ± 2 °C, 12:12 light/dark cycle, 75% relative humidity). Mosquito larvae were fed 0.1mg/larvae of TetraMin Tropical Tablets once a day. Adults were transferred to cages (measuring 30 x 30 x 30 cm) at emergence at 400 individuals per cage. Adults were supplied with a basic diet of 10% sucrose solution (Turley et al., 2009).