Project description:Epigenetic modifications, particularly DNA methylation have been increasingly implicated in cancer. Although some genes display aberrant methylation in pancreatic cancer, a comprehensive global analysis is yet to be performed. To define the genome-wide pattern of DNA methylation in pancreatic ductal adenocarcinomas (PDAC), the methylation profile of 156 PDAC and 23 non-malignant pancreas was captured using high-density arrays. More than 90,000 CpG sites were significantly differentially methylated (DM) in PDAC relative to non-malignant pancreas, with pronounced alterations in a sub-set of 13,517 CpG sites. This sub-set of differentially methylated CpG sites segregated PDAC from non-malignant pancreas, regardless of tumour cellularity. As expected, PDAC hyper-methylation was most prevalent in the 5’ region of genes (including the proximal promoter, 5’UTR and CpG islands). From 3981 genes aberrantly methylated, approximately 36% showed significant correlation between methylation and mRNA expression levels. Pathway analysis revealed an enrichment of aberrant methylation in genes involved in key molecular mechanisms important to PDAC: TGF-β, WNT, Integrin signaling, Cell adhesion, Stellate cell activation and Axon guidance. Bisulfite amplicon deep sequencing and qRT-PCR expression analyses of axon guidance pathway genes SLIT2, SLIT3, ROBO1, ROBO3, SRGAP1, and MET suggested epigenetic suppression of SLIT-ROBO signaling and up-regulation of MET expression. Hypo-methylation of MET and ITGA2 correlated with high gene expression, which correlated with poor survival of PDAC patients. These data suggest that aberrant methylation plays an important role in pancreatic carcinogenesis affecting known core signaling pathways with important implications for disease pathophysiology and therapy. This dataset includes gene expression data from 103 primary tumour samples. 86 samples from this dataset have already been deposited into GEO (GSE36924), and has been duplicated here since the data has been processed differently. This data is also available through the International Cancer Genome Consortium (ICGC) Data Portal (http://dcc/icgc.org), under the project code: Pancreatic Cancer (QCMG, AU). Access to the restricted clinical data must be made through the ICGC Data Access Compliance Office (http://www.icgc.org/daco). This dataset contains gene expression array data from 103 primary pancreatic ductal adenocarcinoma samples. All samples have 1 biological replicate. These data have corresponding methylation 450K array data (GSE49149).
Project description:Genome wide DNA methylation profiling of pancreatic ductal adenocarcinoma (PDAC) and non-tumoral pancreatic samples (PT). The Illumina Infinium450k Human DNA methylation Beadchip was used to obtain DNA methylation profiles in tissue samples. Samples included 6 PDAC and 9 PT.
Project description:Pancreatic ductal adenocarcinoma (PDAC) is characterized by extensive desmoplasia, which challenges the molecular analyses of bulk tumor samples. Here we FACS-purified epithelial cells from human PDAC and normal pancreas and derived their genome-wide transcriptome and DNA methylome landscapes. Clustering based on DNA methylation revealed two distinct PDAC groups displaying different methylation patterns at regions encoding repeat elements. Methylationlow tumors are characterized by higher expression of endogenous retroviral (ERV) transcripts and dsRNA sensors which leads to a cell intrinsic activation of an interferon signature (IFNsign). This results in a pro-tumorigenic microenvironment and poor patient outcome. Methylationlow/IFNsignhigh and Methylationhigh/IFNsignlow PDAC cells preserve lineage traits, respective of normal ductal or acinar pancreatic cells. Moreover, ductal-derived KrasG12D/Trp53-/- mouse PDACs show higher expression of IFNsign compared to acinar-derived counterparts. Collectively, our data point to two different origins and etiologies of human PDACs, with the aggressive Methylationlow/IFNsignhigh subtype potentially targetable by agents blocking intrinsic IFN-signaling.
Project description:Pancreatic ductal adenocarcinoma (PDAC) is characterized by extensive desmoplasia, which challenges the molecular analyses of bulk tumor samples. Here we FACS-purified epithelial cells from human PDAC and normal pancreas and derived their genome-wide transcriptome and DNA methylome landscapes. Clustering based on DNA methylation revealed two distinct PDAC groups displaying different methylation patterns at regions encoding repeat elements. Methylationlow tumors are characterized by higher expression of endogenous retroviral (ERV) transcripts and dsRNA sensors which leads to a cell intrinsic activation of an interferon signature (IFNsign). This results in a pro-tumorigenic microenvironment and poor patient outcome. Methylationlow/IFNsignhigh and Methylationhigh/IFNsignlow PDAC cells preserve lineage traits, respective of normal ductal or acinar pancreatic cells. Moreover, ductal-derived KrasG12D/Trp53-/- mouse PDACs show higher expression of IFNsign compared to acinar-derived counterparts. Collectively, our data point to two different origins and etiologies of human PDACs, with the aggressive Methylationlow/IFNsignhigh subtype potentially targetable by agents blocking intrinsic IFN-signaling.
Project description:Pancreatic ductal adenocarcinoma (PDAC) is characterized by extensive desmoplasia, which challenges the molecular analyses of bulk tumor samples. Here we FACS-purified epithelial cells from human PDAC and normal pancreas and derived their genome-wide transcriptome and DNA methylome landscapes. Clustering based on DNA methylation revealed two distinct PDAC groups displaying different methylation patterns at regions encoding repeat elements. Methylationlow tumors are characterized by higher expression of endogenous retroviral (ERV) transcripts and dsRNA sensors which leads to a cell intrinsic activation of an interferon signature (IFNsign). This results in a pro-tumorigenic microenvironment and poor patient outcome. Methylationlow/IFNsignhigh and Methylationhigh/IFNsignlow PDAC cells preserve lineage traits, respective of normal ductal or acinar pancreatic cells. Moreover, ductal-derived KrasG12D/Trp53-/- mouse PDACs show higher expression of IFNsign compared to acinar-derived counterparts. Collectively, our data point to two different origins and etiologies of human PDACs, with the aggressive Methylationlow/IFNsignhigh subtype potentially targetable by agents blocking intrinsic IFN-signaling.
Project description:Genome-wide DNA methylation screening was performed using the Infinium HumanMethylation450 BeadChip in 34 samples of non-cancerous pancreatic tissue and 82 samples of cancerous tissue samples obtained from 82 patients with pancreatic ductal adenocarcinoma.
Project description:Cell conditioned medium from human pancreatic cancer cell lines MiaPaCa-2, AsPC-1, primary pancreatic cell lines as well as human FFPE tissue samples from pancreatic ductal adenocarcinoma (PDAC), chronic pancreatitis (CP), ampullary cancer, non-malignant adjacent pancreas and normal pancreas were analyzed via targeted (SRM, PRM) and/or explorative (DIA) mass spectrometry.
Project description:Constitutive Kras and NF-kB activation is identified as signature alterations in human pancreatic ductal adenocarcinoma (PDAC). Here, we report that pancreas-targeted IKK2/beta inactivation inhibited NF-kB activation and completely suppressed PDAC development. Our findings demonstrated that NF-kB is required for development of pancreatic ductal adenocarcinoma that was initiated by Kras activation. Pancreatic tissue from 4 groups of mice were used in this project: (1) the pancreas normal appearance of Pdx1-cre;KrasLSL-G12D;IKK2/beta mice, (2) the normal pancreas of Pdx1-cre;KrasLSL-G12D mice, (3) the pancreatic lesion of pancreatic intraepithelial neoplasia (PanIN) of Pdx1-cre;KrasLSL-G12D mice, and (4) the pancreatic lesion of PDAC of Pdx1-cre;KrasLSL-G12D mice. Each group included three mice. RNA samples from mouse pancreas were hybridized on GeneChip Mouse Gene 1.0 ST arrays (Affymetrix). Group (1) and group (2) were compared, and group (2), group (3) and group (4) were compared.