Project description:Genome wide DNA methylation profiling of pancreatic ductal adenocarcinoma (PDAC) and non-tumoral pancreatic samples (PT). The Illumina Infinium450k Human DNA methylation Beadchip was used to obtain DNA methylation profiles in tissue samples. Samples included 6 PDAC and 9 PT.
Project description:To further development of our lncRNA and mRNA expression approach to pancreatic ductal adenocarcinoma(PDAC), we have employed lncRNA and mRNA microarray expression profiling as a discovery platform to identify lncRNA and mRNA expression in pancreatic ductal adenocarcinoma.Human pancreatic ductal adenocarcinoma tissues and normal pancreatic tissues from PDAC donors and other duodenum diseases donors. analyze mRNA and lncRNA expression in pancreatic ductal adenocarcinoma (PDAC) by microarray platform
Project description:Pancreatic ductal adenocarcinoma (PDAC) is believed to arise from the accumulation of a series of somatic mutations and is also frequently associated with pancreatic intraepithelial neoplasia (PanIN) lesions. However, there is still debate as to whether the cell-type-of-origin of PanINs and PDACs is acinar or ductal. As cell type identity is maintained epigenetically, DNA methylation changes during pancreatic neoplasia can provide a compelling perspective to examine this question, but DNA methylation sequencing has not yet been performed genome-wide on purified exocrine and neoplastic cell types in the pancreas. Thus, we performed genome-wide DNA methylation sequencing on acini, non-neoplastic ducts, PanIN lesions, and PDAC lesions. We found that: 1) both global methylation profiles and block DMRs clearly implicate an acinar origin for PanINs; 2) at the gene level, PanIN lesions exhibit an intermediate acinar-ductal phenotype resembling acinar-to-ductal metaplasia (ADM); and 3) PanINs are epigenetically primed to progress to PDAC. Thus, epigenomic analysis complements histopathology to define molecular progression toward PDAC.
Project description:Pancreatic ductal adenocarcinoma (PDAC) is characterized by extensive desmoplasia, which challenges the molecular analyses of bulk tumor samples. Here we FACS-purified epithelial cells from human PDAC and normal pancreas and derived their genome-wide transcriptome and DNA methylome landscapes. Clustering based on DNA methylation revealed two distinct PDAC groups displaying different methylation patterns at regions encoding repeat elements. Methylationlow tumors are characterized by higher expression of endogenous retroviral (ERV) transcripts and dsRNA sensors which leads to a cell intrinsic activation of an interferon signature (IFNsign). This results in a pro-tumorigenic microenvironment and poor patient outcome. Methylationlow/IFNsignhigh and Methylationhigh/IFNsignlow PDAC cells preserve lineage traits, respective of normal ductal or acinar pancreatic cells. Moreover, ductal-derived KrasG12D/Trp53-/- mouse PDACs show higher expression of IFNsign compared to acinar-derived counterparts. Collectively, our data point to two different origins and etiologies of human PDACs, with the aggressive Methylationlow/IFNsignhigh subtype potentially targetable by agents blocking intrinsic IFN-signaling.
Project description:Pancreatic ductal adenocarcinoma (PDAC) is characterized by extensive desmoplasia, which challenges the molecular analyses of bulk tumor samples. Here we FACS-purified epithelial cells from human PDAC and normal pancreas and derived their genome-wide transcriptome and DNA methylome landscapes. Clustering based on DNA methylation revealed two distinct PDAC groups displaying different methylation patterns at regions encoding repeat elements. Methylationlow tumors are characterized by higher expression of endogenous retroviral (ERV) transcripts and dsRNA sensors which leads to a cell intrinsic activation of an interferon signature (IFNsign). This results in a pro-tumorigenic microenvironment and poor patient outcome. Methylationlow/IFNsignhigh and Methylationhigh/IFNsignlow PDAC cells preserve lineage traits, respective of normal ductal or acinar pancreatic cells. Moreover, ductal-derived KrasG12D/Trp53-/- mouse PDACs show higher expression of IFNsign compared to acinar-derived counterparts. Collectively, our data point to two different origins and etiologies of human PDACs, with the aggressive Methylationlow/IFNsignhigh subtype potentially targetable by agents blocking intrinsic IFN-signaling.
Project description:Pancreatic ductal adenocarcinoma (PDAC) is characterized by extensive desmoplasia, which challenges the molecular analyses of bulk tumor samples. Here we FACS-purified epithelial cells from human PDAC and normal pancreas and derived their genome-wide transcriptome and DNA methylome landscapes. Clustering based on DNA methylation revealed two distinct PDAC groups displaying different methylation patterns at regions encoding repeat elements. Methylationlow tumors are characterized by higher expression of endogenous retroviral (ERV) transcripts and dsRNA sensors which leads to a cell intrinsic activation of an interferon signature (IFNsign). This results in a pro-tumorigenic microenvironment and poor patient outcome. Methylationlow/IFNsignhigh and Methylationhigh/IFNsignlow PDAC cells preserve lineage traits, respective of normal ductal or acinar pancreatic cells. Moreover, ductal-derived KrasG12D/Trp53-/- mouse PDACs show higher expression of IFNsign compared to acinar-derived counterparts. Collectively, our data point to two different origins and etiologies of human PDACs, with the aggressive Methylationlow/IFNsignhigh subtype potentially targetable by agents blocking intrinsic IFN-signaling.
Project description:Protein arginine methylation has been established an essential protein modification regulating cancer initiation and progression, but its implications in PDAC (Pancreatic ductal adenocarcinoma) still remains poorly elucidated. In this study, we characterized ADMA (asymmetric dimethylarginine)-bearing peptides in human pancreatic ductal epithelium cell line HPDE6c7 and PDAC cell line PANC-1 by a label-free quantitative proteomics combined with affinity purification.
Project description:To explore the potential involvement of circular RNAs (circRNAs) in pancreatic ductal adenocarcinoma (PDAC) oncogenesis, we conducted circRNA profiling in six pairs of human PDAC and adjacent normal tissue by microarray. Our results showed that clusters of circRNAs were aberrantly expressed in PDAC compared with normal samples, and provided potential targets for future treatment of PDAC and novel insights into PDAC biology. Analyze circular RNA expression in pancreatic ductal adenocarcinoma (PDAC) by microarray platform.
Project description:We carried out a genome-wide cfDNA methylation profiling study of pancreatic ductal adenocarcinoma (PDAC) patients by Methylated DNA Immunoprecipitation coupled with high-throughput sequencing (MeDIP-seq). Compared with healthy individuals, 775 differentially methylated regions (DMRs) located in promoter regions were identified in PDAC patients with 761 hypermethylated and 14 hypomethylated regions; meanwhile, 761 DMRs in CpG islands (CGIs) were identified in PDAC patients with 734 hypermethylated and 27 hypomethylated regions (p-value < 35 0.0001). 143 hypermethylated DMRs were further selected which were located in promoter regions and completely overlapped with CGIs. A total of 8 probes from 8 genes were found to fairly distinguish PDAC patients from the healthy individuals, including TRIM73, FAM150A, EPB41L3, SIX3, MIR663, MAPT, LOC100128977 and LOC100130148.