Project description:Identification of Genes and Genomic Islands Correlated with High Pathogenicity through Tilling Microarray-Based Comparative Genomics in S. suis. Streptococcus suis is an important zoonotic pathogen that can cause meningitis and sepsis in both pigs and humans. S. suis isolates have been categorized into groups of different levels of pathogenicity, with sequence type (ST) ST1 clonal complex strains having a higher degree of virulence than other STs. However, the genetic basis of the differences in pathogenicity is still poorly understood. In this study, a comprehensive genomic comparison of 31 S. suis strains from different clinical sources with the genome sequence of the high pathogenicity (HP) strain GZ1 was conducted using NimbleGen’s tilling microarray platform.
Project description:Chlamydia suis demonstrates unprecedented genome diversity, plasticity and mobile antibiotic resistance: comparative genomics of a recent livestock cohort
Project description:Streptococcus suis is an important zoonotic pathogen that can cause meningitis and sepsis in both pigs and humans. In this study,we evaluated the genetic difference of 40 Streptococcus suis strains belonging to various sequence types by comparative genomic hybridization to identify genes associated with the variation in pathogenicity using NimbleGen’s tilling microarray platform. Application of Comparative Phylogenomics to Identify Genetic Differences Relating to Pathogenicity of Streptococcus suis
Project description:We applied Formaldehyde-Assisted Isolation of Regulatory Elements enrichment followed by sequencing (FAIRE-Seq) to generate genome-wide temporal chromatin maps of Chlamydia trachomatis-infected human epithelial cells in vitro over the chlamydial developmental cycle. We detected both conserved and distinct temporal regions of chromatin accessibility associated with C. trachomatis infection. The observed differentially accessible chromatin regions, including several Clusters of Open Regulatory Elements (COREs) and temporally-enriched sets of transcription factors, may help shape the host cell response to infection. These regions and motifs were linked to genomic features and genes associated with immune responses, re-direction of host cell nutrients, intracellular signaling, cell-cell adhesion, extracellular matrix, metabolism and apoptosis. This work will serve as a basis for future functional studies of transcriptional regulation and epigenomic regulatory elements in Chlamydia-infected human cells.