Project description:Age-related changes in macrophages are thought to underlie deleterious changes in adipose tissue during aging. RNAseq analysis of phagocyte-enriched and -depleted stromal vascular fractions of perigonadal white adipose tissue from young and aged mice revealed age-related differences in gene expression towards identification of adipose tissue macrophage-specific regulation.
Project description:White adipose tissue (WAT) harbors functionally diverse subpopulations of adipose progenitor cells that differentially impact tissue plasticity in a sex- and depot-dependent manner. To date, the molecular basis of this cellular heterogeneity has not been fully defined. Here, we describe a multilayered omics approach to dissect adipose progenitor cell heterogeneity from in three dimensions: progenitor subpopulation, sex, and anatomical localization. We applied state-of-the-art mass spectrometry methods to quantify 4870 proteins in eight different stromal cell populations from perigonadal and inguinal WAT of male and female mice and acquired transcript expression levels of 15477 genes using RNA-seq. Notably, our data highlight the molecular signatures defining sex differences in PDGFR+ preadipocyte differentiation and identify regulatory pathways that functionally distinguish adipose tissue PDGFRb+ subpopulations. The data are freely accessible as a resource at "Pread Profiler. Together, the multilayered omics analysis provides unprecedented insights into adipose stromal cell heterogeneity.
Project description:Excessive fat accumulation is a major risk factor for the development of type 2 diabetes.To determine the mechanisms by wich TP53INP2 regulates adipogenesis, gene expression profile was performed in perigonadal white adipose tissue fromTP53INP2-deficient mice.
Project description:To investigate the global gene expression dynamics associated with short-term fasting, we used mRNA-seq to profile the transcriptomes of nine organs obtained from mice subjected to six different STF duration (0, 2, 8, 12, 18 and 22 hours of fasting; n=3 per time point; Fig. 1a). The nine organs profiled were: olfactory bulb (OB), brain (BRN, which includes the telencephalon and diencephalon), cerebellum (CBL), brainstem (BST, which consists of the mesencephalon, pons, and myelencephalon), stomach (STM), liver (LIV), interscapular brown adipose tissue (iBAT), perigonadal white adipose tissue (pgWAT), and posterior-subcutaneous white adipose tissue (psWAT).
Project description:White adipose tissue (WAT) harbors functionally diverse subpopulations of adipose progenitor cells that differentially impact tissue plasticity in a sex- and depot-dependent manner. To date, the molecular basis of this cellular heterogeneity has not been fully defined. Here, we describe a multilayered omics approach to dissect adipose progenitor cell heterogeneity in three dimensions: progenitor subpopulation, sex, and anatomical localization. We applied state-of-the-art mass spectrometry methods to quantify 4870 proteins in eight different stromal cell populations from perigonadal and inguinal WAT of male and female mice and acquired transcript expression levels of 15477 genes using RNA-seq. Notably, our data highlight the molecular signatures defining sex differences in PDGFRb+ preadipocyte differentiation and identify regulatory pathways that functionally distinguish adipose tissue PDGFRb+ subpopulations. Together, the multilayered omics analysis provides unprecedented insights into adipose stromal cell heterogeneity.
Project description:Insulin action in adipocytes affects whole-body insulin sensitivity. Studies of adipose-specific Glut4 knockout mice have established that adipose Glut4 contributes to the control of systemic glucose homeostasis. Presumably, this reflects a role for Glut4-mediated glucose transport in the regulation of secreted adipokines. In cultured 3T3-L1 adipocytes, Rab10 GTPase is required for insulin-stimulated translocation of Glut4 (Sano et al., 2007). The physiological importance of adipose Rab10 and the significance of its role in the control of Glut4 vesicle trafficking in vivo are unknown. Here we report that adipocytes from adipose-specific Rab10 knockout mice have a ~50% reduction in glucose uptake and Glut4 translocation to the cell surface in response to insulin, demonstrating a role for Rab10 in Glut4 trafficking. Moreover, hyperinsulinemic-euglycemic clamp shows decreased whole-body glucose uptake as well as impaired suppression of hepatic glucose production in adipose Rab10 knockout mice. Thus, fully functional Glut4 vesicle trafficking in adipocytes is critical for maintaining insulin sensitivity. Comparative transcriptome analysis of perigonadal adipose tissue demonstrates significant transcriptional similarities between adipose Rab10 knockout mice and adipose Glut4 knockout mice, consistent with the notion that the phenotypic similarities between the two models are mediated by reduced insulin-stimulated glucose transport into adipocytes. Transcriptome sequencing of perigonadal white adipose tissue