Project description:It has been shown that DNA demethylation has a pivotal role in the generation of induced pluripotent stem (iPS) cells. However, the underlying mechanism is still unclear. Previous reports indicated that activation-induced cytidine deaminase (Aid) is involved in DNA demethylation in several developmental processes and cell fusion-mediated reprogramming. Based on the reports, we hypothesized that Aid may be involved in DNA demethylation during the iPS cell generation. In this study, we examined the function of Aid in iPS cell generation using Aid knockout (Aid-/-) mice expressing a GFP reporter under the control of a pluripotent stem cell marker, Nanog. By the introduction of Oct3/4, Sox2, Klf4 and c-Myc, Nanog-GFP positive iPS cells could be generated from the fibroblasts and primary B cells of Aid-/- mice. The Aid-/- iPS cells showed normal proliferation and gave rise to chimeras, indicating their capacity for self-renewal and pluripotency. Microarray analysis demonstrated that the global gene expression of Aid-/- iPS cells was similar to that of Aid+/+ iPS cells. Aid+/+ and Aid-/- iPS colonies were generated from Aid+/+ and Aid-/- MEFs and picked up mechanically. The clones were passaged four times on feeder cells and two times on gelatin-coated dishes to exclude the contamination of feeder cells. Subsequently, the RNA was isolated. Six Aid+/+ iPS cell clones and six Aid-/- iPS cell clones were compared by microarray.
Project description:To study effect of VRK1 deletion on spermatogenesis of the mouse, transciptomic analysis of genes in postnatal 8-day testicular cells of wild type and VRK1-deficient Mus musculus was performed.
Project description:To study effect of VRK1 deletion on spermatogenesis of the mouse, transciptomic analysis of genes in postnatal 8-day testicular cells of wild type and VRK1-deficient Mus musculus was performed. Gene expression in testes from from wild type and VRK1-deficient mutant Mus musculus, respectively, was measured. Four independent experiments for wild type and mutant, respectively, were performed.
Project description:Introgressed variants from other species can be an important source of genetic variation because they may arise rapidly, can include multiple mutations on a single haplotype, and have often been pretested by selection in the species of origin. Although introgressed alleles are generally deleterious, several studies have reported introgression as the source of adaptive alleles-including the rodenticide-resistant variant of Vkorc1 that introgressed from Mus spretus into European populations of Mus musculus domesticus. Here, we conducted bidirectional genome scans to characterize introgressed regions into one wild population of M. spretus from Spain and three wild populations of M. m. domesticus from France, Germany, and Iran. Despite the fact that these species show considerable intrinsic postzygotic reproductive isolation, introgression was observed in all individuals, including in the M. musculus reference genome (GRCm38). Mus spretus individuals had a greater proportion of introgression compared with M. m. domesticus, and within M. m. domesticus, the proportion of introgression decreased with geographic distance from the area of sympatry. Introgression was observed on all autosomes for both species, but not on the X-chromosome in M. m. domesticus, consistent with known X-linked hybrid sterility and inviability genes that have been mapped to the M. spretus X-chromosome. Tract lengths were generally short with a few outliers of up to 2.7 Mb. Interestingly, the longest introgressed tracts were in olfactory receptor regions, and introgressed tracts were significantly enriched for olfactory receptor genes in both species, suggesting that introgression may be a source of functional novelty even between species with high barriers to gene flow.
Project description:It has been shown that DNA demethylation has a pivotal role in the generation of induced pluripotent stem (iPS) cells. However, the underlying mechanism is still unclear. Previous reports indicated that activation-induced cytidine deaminase (Aid) is involved in DNA demethylation in several developmental processes and cell fusion-mediated reprogramming. Based on the reports, we hypothesized that Aid may be involved in DNA demethylation during the iPS cell generation. In this study, we examined the function of Aid in iPS cell generation using Aid knockout (Aid-/-) mice expressing a GFP reporter under the control of a pluripotent stem cell marker, Nanog. By the introduction of Oct3/4, Sox2, Klf4 and c-Myc, Nanog-GFP positive iPS cells could be generated from the fibroblasts and primary B cells of Aid-/- mice. The Aid-/- iPS cells showed normal proliferation and gave rise to chimeras, indicating their capacity for self-renewal and pluripotency. Microarray analysis demonstrated that the global gene expression of Aid-/- iPS cells was similar to that of Aid+/+ iPS cells. Aid+/+ and Aid-/- iPS colonies were generated from Aid+/+ and Aid-/- MEFs and picked up mechanically. The clones were passaged four times on feeder cells and two times on gelatin-coated dishes to exclude the contamination of feeder cells. Subsequently, the RNA was isolated. Six Aid+/+ iPS cell clones and six Aid-/- iPS cell clones were compared by microarray. Samples from Aid+/+ and Aid-/-iPS cells